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Abstract

Today’s Web comprises a vast and growing knowledge of information organized
and presented in HTML pages. Major search engines like Google and Bing are
continuously crawling and indexing the Web to provide a simple and convenient
keyword based access to this information. Their focus primarily is to help users
find relevant URLs that satisfy a particular information need. Besides Web
search there are also popular directories (e.g., DMOZ, Yahoo) that support a
browsing based exploration. Both of these paradigms are based on a page level
type of aggregation and navigation.

We argue that there is an emerging interest to organize information around
entities or concepts, which is not well served with the current information re-
trieval and browsing capabilities provided on the Web. As a solution we’re
introducing WebSnippets, relevant context surrounding entities or concepts, au-
tomatically discovered and extracted from the Web. Those WebSnippets com-
prise information, facts, and knowledge (”soft facts”) that can then be consumed
by users to learn more about those topics. We’re presenting a large scale system
architecture based on the Web carnivore approach that systematically leverages
web search engines to find information sources as potential candidates, and then
extracts, filters, and ranks snippets based on their overall relevancy and inter-
estingness. We evaluated our approach and compared the quality of extracted
snippets with Google, and other popular information sources that show page
summaries and extracted information. Our results show that our WebSnippets
are considered on average three times as relevant and four times as interesting
compared to those sources. We also show a case study where we integrated
WebSnippets into the Live Like a German travel web site to augment their edi-
torial content with high quality, algorithmically extracted information snippets
related to places and travel destinations in Germany.

We conclude that WebSnippets can be useful for a variety of web applica-
tions, knowledge discovery, and present a new way of allowing users to conve-
niently browse and explore the vast knowledge of the Web organized by their
favorite entities and topics of interest.
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Chapter 1

Introduction

This thesis explores research questions that aim to automatically extract rele-
vant contextual information (and so called “soft-facts”) for entities and concepts
from the Web.

We first introduce the terms and terminology used throughout this thesis,
followed by an introduction that motivates the research on automated entity-
centric snippet extraction. Then we state the problems that we explore in
this thesis. The chapter ends with an overview and outline of the subsequent
chapters of the thesis.

1.1 Terminology

This section briefly defines the terminology we are using in this thesis paper.

concept We refer in general to everything that exists as an idea or abstract
concept as a concept. For example, “car insurance” is a concept. There is
no concrete or specific instance to it, but it still exists as an abstract idea
or thought. Topics (e.g., “gardening”) are also considered concepts, and
entities itself are also concepts.

entity With entities we refer to something which is perceived, known or in-
ferred to have its own distinct existence (living or nonliving). For ex-
ample, a person “Brad Pitt” is an entity. It is a specific instance of a
person. Within the research area of NER [36] common entity types are
person, places, or organizations. Entities are therefore a specific subset of
concepts.

snippet With snippet we refer to a piece of text of varying length. This can
either be a full sentence or an excerpt, that can be surrounded by ellipses.

1



CHAPTER 1. INTRODUCTION 2

Throughout this thesis we refer to a snippet in the context of an entity-
centric snippet, which is a piece of text surrounding an entity or concept.
In other literature a snippet is also referred to as context [51], information
nugget or simply nugget. We also might refer to a snippet as a soft-fact,
as opposed to a “hard-fact” or fact, which is a single value, that has one
truth, such as a birthday.

entity-centric With entity-centric we refer to information or content that is
about a specific entity.

query With query we refer to a string of text, which is send to a search engine
or IR system as input to express an information need.

search engine With search engine we refer to a general purpose (web) search
engine like Google1, Yahoo2, Bing3, or an IR system which accepts a query
as input and returns an ordered list of web results.

web result With web result we refer to an object, which is returned by a
search engine. Throughout this thesis, we assume that a web result is
composed of a URL or reference to an external document, the title and/or
optionally the description of the document. Furthermore, we assume that
a web result contains additional meta-data and information about the
search engine it was retrieved from, including its rank position assigned
by the search engine and the query used.

information overload With information overload we refer to the issue of
making decisions based on too much information provided. Especially
on the Web, without knowing the validity of the content and the risk of
misinformation, it is hard for the user to make a decision.

information need With information need we refer to the user’s desire to ob-
tain information to satisfy need [48]. An information need can be ex-
pressed using one or multiple queries.

user-centric As opposed to machine-centric systems, where the primary con-
sumer of output is a machine, with user-centric we refer to systems, where
the primary consumer of output is a human person.

1http://www.google.com, accessed 31/01/2010
2http://www.yahoo.com, accessed 31/01/2010
3http://www.bing.com, accessed 31/01/2010
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1.2 Motivation

Terrabytes of information are nowadays freely accessible, which leads to infor-
mation overload to users. In 1983 Gerald Salton, father of IR, predicted a time
when people would be forced to use information that was easily available and
ignore the rest. [44]

Search engines like Google aim to organize the world’s information. But
they have limitations: Their focus is primarily to help users find relevant URLs
that satisfy their information need using keyword search queries. This type of
retrieval works extremely well for navigational queries, where a user for example
is looking for a particular homepage. Besides navigational queries there are also
informational type of queries [12]. Search engines are also very good at locating
documents for this type of queries, but it is up to the user then to scan through
the documents and retrieve the desired information somewhere buried within
its text. This manual scanning process can be very labor intensive. The overall
retrieval paradigm for Web search is based on locating URLs (representing web
pages) given a query.

Figure 1.1: Screenshot of the DMOZ web directory

As an alternative to web search many major web directories (e.g., DMOZ4,
Yahoo) exist to support browsing to allow users more in an exploration mode
to locate useful web resources. In this model a user typically navigates through

4http://www.dmoz.org, accessed 31/01/2010
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a taxonomy of topics, organized by the creator of the directory, to eventually
find links to URLs that seem promising. Similarly the navigation is based on
following URLs representing web pages.

Search engines help users by returning summaries or a “snippet” of a docu-
ment that try to summarize a web page and provide guidance on whether the
content of the web page is worth exploring further [26]. Often those summaries
are dynamically generated to include the user’s query as an anchor into the
document. One problem with this approach is that those snippets are opti-
mized for page summarization, not necessarily for information consumption of
a particular topic. For example, a page may comprise a large subset of top-
ics or entities. A good page summarizer needs to provide an overview to the
user that a page is about these topics, but given the space constraints cannot
then go further and provide more detailed information for each topic or entity
that is listed. Furthermore, the same topic can occur multiple times across the
document. Suppose that all occurrences would reveal interesting information, a
snippet has to be short, therefore would not be able to incorporate all this data
and needs to focus in typically on one prominent occurrence.

Figure 1.2: Screenshot of a web result that contains insufficient information
about an entity

We are interested in a use case where a user wants to explore a concept,
or entity, and would like to consume the most interesting facts or news very
quickly. The reason is that there are many of this type of queries. Guo et al.
argue [21], that 71 percent of search queries contain named entities.

Figure 1.3: Screenshot of a web result that conains “good” information about
an entity
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For more static type of facts users would typically go to Wikipedia5 and
enter the topic as a query. Then scan through the Wikipedia page to find pieces
of interest. Wikipedia articles can be very long, and a lot of interesting facts
are sometimes difficult to locate if the article is not well organized. Besides
Wikipedia there are a plethora of web documents available that provide more
information for a given entity that is very relevant and can highly augment the
information that has been provided by Wikipedia. However, it is very tedious
to manually search for these - given the limitations of the current retrieval sys-
tems. Scanning through hundreds of search results, then reviewing and reading
each of the pages to find a particular interesting fact is a not scalable for hu-
man consumption. In addition, many pages may contain interesting facts, but
a user already had known about this one from a previous page, so the provided
information, although considered relevant from a search engine’s perspective is
not all that useful to the user.

Figure 1.4: Screenshot of a web page that conains an entity

For more dynamic type of sources, like News or blogs, a user can use the same
approach outlined in the previous paragraph, but the same limitations apply.
Particularly the problem of finding the same news over and over again is more
apparent here, since when a news article spreads it gets typically copied and
minor modifications are gradually added (e.g., the same article, minor change in

5http://en.wikipedia.org, accessed 31/01/2010
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the headline), which is a problem area major news aggregators face. Removing
duplicative news articles is a challenging task itself.

We therefore argue that there is a lack of entity or concept centric retrieval
capabilities to support this use case, and none of the major search engines are
optimized for this usage scenario.

Figure 1.5: An example of an entity-centric search query

In an “entity-centric” retrieval system the underlying information units are
entities or concepts, not simple text tokens. For example, the actor “Tom
Cruise” represents an instance of such an entity of type “actor”. While the
research area related to entity-centric retrieval [5] has seen some increased pop-
ularity in the past years [15], there is still a need to bring more focus towards
the discovery and consumption aspects of what we call “soft-facts” for a given
entity or concept. It would be desirable to discover new facts and information
about “Tom Cruise” and organize this data intuitively to make it convenient
for in-page consumption.

An “entity-centric” search system takes as an input an entity or concept,
then constantly scours the Web for new “information nuggets” (e.g., soft-facts,
news), and adds those to a knowledge base. There are many research challenges
in such a system. For example, entities might be ambiguous (Washington the
place vs. Washington the person). Even within one category (e.g., a place)
there can be ambiguity (e.g., Washinton the state vs. Washington the city.)
Facts need to be filtered out that are not relevant for a particular meaning of
an entity. In addition, there is plenty of redundant information available for a
given entity (e.g., “Frankfurt is a town in Hesse” vs. “Frankfurt am Main is a
town in Hesse”). Both of these are very similar and therefore redundant from a
user’s perspective. An “entity-centric” search system should therefore identify
this semantic similarity and only add information to the knowledge base that
is not already there. Furthermore, ranking information “nuggets” or snippets
(which we use as the terminology in this thesis) is critical to quickly identify
the most relevant snippets based on a user’s interest. Such ranking can work
on different dimensions, such as “relevancy” of snippets in regard to the entity,
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“interestingness”, or “buzzyness” to name a few. Last not least, such a system
should be personalized, and know what a user has already learned about, and
only present over time new knowledge that a user has not seen before.

To validate our hypothesis we conducted an experiment where we collected a
small random set of entities (e.g., places, products, organizations, persons). We
then issued these as queries to various search engines (e.g., Google, Yahoo, Bing,
...) and obtained the top k ranked snippets and title of each result item. We
would then merge them in random order into a list, sorted by entity, and then
present that list to a user. The user then would be ask to judge the quality of
each snippet along different dimensions (e.g., overall relevancy, interestingness,
likelihood to click on it to learn more.)

Figure 1.6: Screenshot of the experiment evaluating snippets

The result of this study suggests that the existing search engines are not
ideal for supporting this entity-centric exploration use case, based on their over-
all low relevancy and interestingness scores for their snippets that were judged
in this experiment. This validates our initial observation that search engine
snippets are primarily optimized for page summarization, not in-place informa-
tion consumption.

Besides end users there are also publishers and web site owners who’s goal
is to keep users/traffic on their site. By providing contextual relevant facts and
information for each entity that appears on a page a user can conveniently con-
sume that information in-context, therefore staying longer on a the page instead
of leaving and searching for that information elsewhere [27,28,51]

A key problem that remains for a publisher is to find such relevant contex-
tual information. There are feed provider that sell this type of information,
and those feeds may not be cheap to license. In general editorial resources are
expensive, and traditionally many of those commercial feeds are built and or-
ganized by editors to maintain high quality.

We were therefore motivated to find an algorithmic and scalable solution for
finding high quality web content and associate it with corresponding entities.
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1.3 Problem Statement

Our experiments have shown that there are interesting information “snippets”
that are buried in deep web results, and then further on large pages with lots of
non-relevant data around it (e.g., sidebar navigation, ads, long articles, footer,
...) - these comprise valuable entity-centric information for consumption, but
are difficult to discover using traditional information retrieval methods.

We argue that there is an emerging interest to organize information around
entities or concepts, which is not well served with the current information re-
trieval and browsing capabilities provided on the Web. We would like to enable
a user therefore to conveniently locate relevant and useful information for their
topics of interest that can be consumed effectively without requiring the user to
scan through long documents or read relevant news articles. We envision inter-
faces that can be accessed via Search or Browse based paradigm, or applications
that will provide direct access to a user’s favorite entities and concepts (e.g.,
bookmarking) and then allow to consume relevant soft-facts or news for those
entities/concepts in place.

To address this we need to solve the following problems:

1. Constantly and efficiently identify documents on the Web that contain
relevant entities or concepts, along with associated information for a given
context.

2. Recognize entities in context to ensure the correct meaning of an entity
is used when extracting surrounding context. For example, for the entity
“Washington” the person we do not want to extract context related to
“Washington” the place.

3. Extract relevant context located in a window around entities (or located
on the same page), select appropriate boundaries to avoid under- or over-
selection of the surrounding context.

4. Collect all contexts for a given entity (recall) and remove redundant in-
formation and duplicates.

5. Keep up with real-time and fresh information as it becomes available for
a given entity.

6. Rank remaining contexts for a given entity based on their overall quality
and interestingness. We do not consider personal relevance, but focus on
general relevancy and interestingness to a broader audience. Ultimately
personal relevance seems an important direction to consider in future work.
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7. Build a platform that provides APIs with convenient access to these con-
texts given an entity as an input

The research questions are addressed by designing, implementing and eval-
uating a system that automatically finds and extracts knowledge from websites
and stores it so that a user can easily access it. The requirements for such a
system are as follows:

• The system needs prior knowledge as input to find contextual-relevant
information. It therefore takes as input a list of entities / concepts, along
with possible meta-data for those entities.

• Editorial interfaces need to be provided to manage meta-data.

• The system design needs to be scalable, large-scale, and possess good
performance to be able to handle a large set of entities, and generate
snippets on an ongoing basis.

• The system design needs to be domain independent. For example, should
work well for places, persons, organizations, and general topics.

• Support for the multiple sources of information from the web. There
are different web search engines that are accessed with possible different
APIs and protocols. In addition, document sources can have different file
formats.

• Support for context (provenance) of information: entity descriptions are
given in the context of a website or dataset;

• The system needs to provide APIs for retrieving or subscribing to snippets
for a given entity or list of entities.

1.4 Outline

The remainder of this thesis is organized as follows:

Chapter 2 provides more background and an overview of related work.

Chapter 3 presents the system design and reviews it main components.

Chapter 4 discusses implementation and engineering aspects, and presents
an overview of technologies used, which design features have been implemented,
and how.
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In chapter 5 we evaluate and study the system’s performance and overall
quality of the snippet extraction.

Chapter 6 shows a concrete use case on how the WebSnippet system can
be integrated into a travel web site, helping with the automatic generation of
entity centric content for consumption.

Chapter 7 concludes with a summary of our results, achievements, and
lessons learned while working on our WebSnippet system. An outlook is pro-
vided on future work and open problems.



Chapter 2

Background

This chapter comprises two parts. The first part reviews the preliminaries in
the area of knowledge representation, web information retrieval and extraction,
natural language processing, and data mining. The second part reviews state-of-
the-art related work that has been proposed in different research areas relevant
to our work.

Knowledge 
Represent-

ation

Web Information 
Retrieval and 

Extraction

Machine 
Learning

Natural 
Language 

Processing

Figure 2.1: Overview over the related research areas

2.1 Preliminaries

This section explains briefly common approaches in the field of knowledge repre-
sentation, information retrieval, natural language processing and machine learn-
ing, which serve as foundation for our system.

11
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2.1.1 Knowledge Representation

Knowledge Representation determines the form in which data is stored and
processed. For this thesis, that representation is important in two ways: (1) as
input, that is, how the source information is represented and to some degree (2)
as output, that is, how to store extracted data. Although there are many ways
to represent knowledge [3, 39, 43], this section focuses on representations that
are relevant for this thesis.

Web Information Sources

In the field of Web Information Retrieval (Section 2.1.2), sources of information
are mainly categorized by their degree of structured-ness and semantics, into
three classes of information sources.

Unstructured Information Sources A source, that provides no machine-
readable structure to gain any semantic information, is considered unstructured.
The only way to extract that information is Natural Language Processing (Sec-
tion 2.1.4). Due to the huge number of plain text documents or documents,
which structure can’t be inferred, this is the most important source of informa-
tion to deal with in our thesis.

Semi-Structured Information Sources A semi-structured source contains
much unstructured content, which is wrapped in some extractable, structure-
providing facility, such as HTML tags. Semi-structured documents may also
contain meta-information, such as the date of creation or the author. Most
documents on the Web that are considered semi-structured are either feeds or
HTML pages.

Structured Information Sources A source is considered structured, if it
can be fully parsed and understood by a machine. Therefore structured data
requires a schema (meta-information) that describes the data. Common sources
for structured data are XML1 (eXtensible Markup Language) files with a defined
schema or databases.

Knowledge Base

To find and extract information from the Web, some extraction systems use
previous domain knowledge about the concepts and attributes defined in an
ontology and entities, facts and relationships stored in a knowledge base.

1http://www.w3.org/XML, accessed 31/01/2010
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Ontologies represent concepts within a certain knowledge domain and make
the relationships between those concepts explicit. Ontologies enable to sepa-
rate instance data from the schema. The data structure and the actual data or
knowledge are stored apart from each other.

The schema of an ontology and instance data is called a Knowledge Base.
Since it is not the focus of this thesis to deal with ontologies in great detail, we
refer to further literature [38].

2.1.2 Web Information Retrieval and Extraction

This section surveys the field of Information Retrieval and Extraction in general
and the retrieval and extraction tasks for the Web in particular. The follow-
ing paragraph presents the different terms and research fields, in the area of
automated information aggregation on a set of sources.

Information Retrieval The term Information Retrieval (IR) refers to the
the task of helping users to find information that matches their information
needs [30].

A typical IR system operates on a collection of documents, where the input
is a query and the output is a ranked list of documents. The documents in
the collection are organized through an index, which is used to efficiently route
queries to the correct documents.

The typical components of an IR system are: (1) the document index, (2)
the query processing, (3) the document retrieval, (4) the document ranking. As
a representative for a well known IR system, we mention Lucene2 here.

Web Information Retrieval Web Information Retrieval (WIR) is a special
form of IR, where the document collection is the Web and the documents are
web pages. Furthermore, a WIR system uses a crawler component, to find doc-
uments on the Web based on their hyperlink structure. In literature, a WIR
systems is also referred to as a search engine or web search engine.

The world’s probably best known WIR systems are Google, Yahoo, and
Bing. But also an open source system, called Nutch3 should be mentioned here.

2http://lucene.apache.org, accessed on 20/03/2010
3http://lucene.apache.org/nutch, accessed on 20/03/2010
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Information Extraction In contrast to information retrieval, Information
Extraction (IE) is the process of extracting information to a given target struc-
ture such as a template or an ontology. The IE tasks are defined by an input
(such as an HTML page) and an output (such as a populated database).

Web Information Extraction Similar to the analogy of WIR, a Web In-
formation Extraction (WIE) system is an adapted IE system for the special
requirements of the Web, to deal with semi-structured content [13].

Open Information Extraction Open Information Extraction (OIE) is a
special type of IE system, which was first proposed in 2007 by Banko et al. [6].
The main idea of OIE is to extract unstructured, textual statements in the form
of <SUBJECT, PREDICATE, OBJECT> from unstructured text.

State-of-the-art IE/IR systems will be discussed in Section 2.2.4.

2.1.3 Evaluation of Web Information Retrieval

This section presents common evaluation measures for the effectiveness of Web
Information Retrieval and Extraction systems.

The standard evaluation measures of a information retrieval system revolve
around the notion of relevant and non-relevant documents. The documents in
the test collection are classified either relevant or non-relevant, which is referred
to as gold standard judgement. Relevance is assessed relative to an information
need, not a query.

Evaluation of Unranked Retrieval Results

The standard measures for comparing unranked result sets, which are used in
IR and IE systems, are precision (Equation 2.4), recall (Equation 2.2) and their
combination which can be expressed in the F-Score (Equation 2.3).

Precision Precision is the fraction of retrieved results that are relevant.

Precision =
relevant retrieved

retrieved
=

TP

TP + FP
(2.1)

Recall Recall is the fraction of relevant results that are retrieved.

Recall =
relevant retrieved

relevant
=

TP

TP + FN
(2.2)
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F-Score The combination of precision (p) and recall (r) leads to a weighted
F-Score [50]. The parameter β can be used to weight the importance of either
precision or recall. The higher β the more importance is given to precision
instead of recall.

Fβ = (1 + β2)
p r

β2 p+ r
=

(1 + β2)TP
(1 + β2)TP + β2FN + FP

(2.3)

With respect to a given query, the documents can be partitioned into four
sets, as shown in Table 2.1.

Relevant Non-relevant

Retrieved true positives (TP) false positives (FP)

Not retrieved true negatives (TN) false negatives (FN)

Table 2.1: Partitioning of IR documents, with respect to a given query

Evaluation of Ranked Retrieval Results

Precision and recall are measures of sets. In a ranked list, which is used in a
WIR or web search system, we can measure the precision at each recall point.
Recall increases when a relevant document is retrieved.

Precision Recall Curve There is a tradeoff between precision and recall.
Increasing recall to retrieve more results decreases precision. The Precision-
Recall-Curve shows the retrieval performance at each point in the ranking.

Precision at k Precision at k (P@k) shows the precision at k documents
retrieved. This is useful, for example if you look at first search result page.
Table 2.2 shows an example including precision at each recall point.

P@k =
∑k
i=1 relevant?(i)

k
(2.4)

Average Precision The Average-Precision (AP) is the average of the preci-
sion values for the set of top k documents existing after each relevant document
is retrieved. If document at rank k is not relevant, its skipped. This value is
calculated per query (q).

APq =
∑k
i=1 P@i ∗ relevant?(i)

|relevant|
(2.5)
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Rank Relevant P@k AP

1 NO 0 0

2 YES 0.5 0.5 = 0.5 / 1

3 NO 0.333 0.5 = 0.5 / 1

4 YES 0.5 0.5 = (0.5 + 0.5) / 2

5 NO 0.4 0.5 = (0.5 + 0.5) / 2

6 NO 0.333 0.5 = (0.5 + 0.5) / 2

7 YES 0.429 0.476 = (0.5 + 0.5 + 0.429) / 3

8 YES 0.5 0.483 = (0.5 + 0.5 + 0.429 + 0.5) / 4

9 YES 0.556 0.497 = (0.5 + 0.5 + 0.429 + 0.5 + 0.556) / 5

10 NO 0.5 0.497 = (0.5 + 0.5 + 0.429 + 0.5 + 0.556) / 5

Table 2.2: Partitioning of IR documents, with respect to a given query

Mean Average Precision The Mean-Average-Precision (MAP) provides the
average precision for multiple queries.

MAP =

∑Q
q APq

|Q|
(2.6)

(Root) Mean Squared Error The Mean Squared Error (MSE) measures the
mean difference between actual (a) and predicted (p) values of data instances
(i). Also often used is the Root Mean Squared Error (RMSE).

MSE =
1
n

n∑
i=1

(ai − pi)2 (2.7)

RMSE =

√√√√ 1
n

n∑
i=1

(ai − pi)2 (2.8)

2.1.4 Natural Language Processing

The task of Natural Language Processing (NLP) is a collective term for a bunch
of technologies that deal with processing natural language. A typical NLP
scenario consists of a chain of NLP subtasks. This section gives a short overview
of the relevant technologies as well as metrics of readability of text.

Tokenization NLP deals with unstructured (raw) text. A series of characters
without semantic. For most NLP tasks the next larger unit are words.
Tokenization transforms a series of characters into a series of tokens, which
in most cases, are words.



CHAPTER 2. BACKGROUND 17

Sentencing The next larger unit are sentences. Sentencing splits a series of
tokens into a series of larger tokens or sentences by detecting sentence
boundaries.

Part Of Speech Tagging In natural language each sentence is made up of a
series of words. In each language there exists a set of rules for constructing
a sentence, the so called grammar. Part Of Speech Tagging assigns each
token its grammatical role in the sentence.

Phrase Extraction Phrase Extraction refers to the automatic selection of im-
portant words that best describe the contents of a document. Phrase
Extraction is often used in page summarization techniques.

Named Entity Recognition Named Entity Recognition or Entity Extraction
refers to the task of identification of known entities or concept-tokens in
the text.

Co-Reference Resolution Co-Reference Resolution refers to the task of find-
ing indirect mentionings of named entities in the text. For example,
“Frankfurt is a city in Hesse, it is the financial center of the country.”

Readability Tests

Readability tests are formulas for evaluating the readability of text by count-
ing syllables, words, and sentences. This section presents common readability
indices, which will be used later in this thesis.

The Flesch-Kincaid Grade Level, Gunning Fog Index, SMOG Index, and
Coleman-Liau Index produce an approximate representation of the US grade
level needed to comprehend the text.

Flesch-Kincaid Reading Ease The Flesch-Kincaid Reading Ease (Flesch)
test rates text on a 100 point scale. The higher the score, the easier it is
to understand the text. A score of 60 to 70 is considered to be optimal,
as it is easily understandable by 13- to 15-year-old students.

Flesch = 206.835− 1.015 ∗ wordcount

sentencecount
− 84.6 ∗ syllablecount

wordcount
(2.9)

Gunning-Fog Score The Gunning-Fog Score (FOG), developed by Robert
Gunning, indicates the number of years of formal education a reader would
need to understand the text on the first reading.
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FOG = (
wordcount

sentencecount
+ 100 ∗ longwordcount

wordcount
) ∗ 0.4 (2.10)

Flesch-Kincaid Grade Level The Flesch-Kincaid Grade Level (Kincaid) trans-
lates the 100 point scale to a U.S. grade school level. So a score of 8.0
means that the document can be understood by an eighth grader. A score
of 7.0 to 8.0 is considered to be optimal.

Kincaid = (0.39 ∗ wordcount

sentencecount
) + 11.8 ∗ syllablecount

wordcount
)− 15.59 (2.11)

Automated Readability Index The Automated Readability Index (ARI) is
a readability test designed to gauge the understandability of a text.

ARI = (4.71 ∗ lettercount
wordcount

) + 0.5 ∗ wordcount

sentencecount
)− 21.43 (2.12)

Coleman-Liau Index The Coleman-Liau Index (Coleman) is a readability
test designed by Meri Coleman and T. L. Liau to gauge the understand-
ability of a text.

Coleman = (5.89 ∗ lettercount
wordcount

)− 0.3 ∗ sentencecount
wordcount

)− 15.8 (2.13)

SMOG Index The Simple Measure of Gobbledygook Index (SMOG) is a read-
ability formula that estimates the years of education needed to completely
understand a piece of writing.

SMOG = 1.043 ∗
√
longwordcount ∗ 30

sentencecount
+ 3.1291 (2.14)

All these indices have the same issue. Since they do not directly take syn-
tactic or semantic complexity into account, they are not considered definitive
measures of readability.

2.1.5 Machine Learning

This section briefly introduces the main concepts of machine learning, and high-
lights certain aspects that are relevant to this thesis. This is not a complete
overview, therefore we refer to the literature dedicated to machine learning [14].
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Machine learning algorithms are organized into a taxonomy, based on the
desired outcome of the algorithm. One machine learning paradigm is supervised
learning, which is explained as follows.

Supervised Learning refers the task of “learning” a target function and pre-
dict an outcome, based on a previously trained prediction model. Figure 2.2
illustrates the basic learning process, where (1) training data is used by (2) a
learning algorithm to generate (3) a classification or prediction model. Given
(4) a set of test data, (5) the accuracy of the trained model can be evaluated.

Training 
Data Test Data

Learning 
Algorithm Model Accuracy

Figure 2.2: The basic supervised machine-learning process

To evaluate the performance or accuracy of a trained model, typically the
data are split into three disjoint subsets: (1) training data (2) validation data,
and (3) testing data. Each of these subsets play a different role in the design
process. All three data sets have to be representative samples of the data that
the model will be applied to.

The training set (seen data) is used to build the model (determine its param-
eters). The test set (unseen data) is used to measure its performance (holding
the parameters constant). The validation set is used to tune the model (e.g.,
for pruning a decision tree). The validation set can’t be used for testing (as it’s
not unseen).

The division of the data into three subsets could be done in many different
ways. For our purposes we use cross-validation, where the idea is (1) to split
the whole data set in k folds (subsets) of equal size, (2) train the model on k -
1 folds, use one fold for testing, (3) repeat this process k times so that all folds
are used for testing and (4) compute the average performance on the k test sets.
Cross-validation maximizes the use of the data.

While a classification model uses a set of features to predict which class
label shall be assigned to a data instance, a similar method called regression
calculates a continuous output variable, so that a certain approximation error
is minimized. This is especially useful for our ranking component, where we get
a fine grained regression score rather than a true/false prediction.
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2.2 Related Work

This section reviews related work, state-of-the-art technologies, and systems in
the field of entity-centric context selection and information extraction.

There is actually to the best of our knowledge no such system that provides
a solution for our research and problem statement in this thesis.

However, certain technologies and research areas are related to various as-
pects of our proposed system. We describe that related work in this section and
explain how a certain approach differs from ours.

2.2.1 Web Carnivores

Etzioni coined this colorful phrase in [19]. In this analogy, Web pages are at the
bottom of the Web information food chain. Search engines are the herbivores
of the food chain, grazing on Web pages and regurgitating them as searchable
indices. Carnivores sit at the top of the food chain, intelligently hunting and
feasting on the herbivores.

The carnivore approach leverages the significant and continuous effort re-
quired to maintain a world-class search engine (crawling, scrubbing, de-spamming,
parsing, indexing, and ranking). In a search context, the carnivore approach
is applicable when standard web search engines are known to contain the doc-
uments of interest but do not return them in response to naive queries. In
literature, this pattern is also referred to as meta-search or federated-search.

In the past years this architecture style became more and more popular. For
example, Yahoo recently outsourced its search engine to Bing and builds its
search products as carnivores on top of Bing. Even for real time search this is
interesting, because Google and Bing, both started to real-time index Twitter.
Some of those carnivore implementation are relatively simple, since they just
forward queries without leveraging an extensive query rewriting strategy, or
try to leveraging multiple information in parallel. Nevertheless, we see that is
going to happen gradually. For example, one can envision the usage of Twitter
for related tweets given an input document. In that case a carnivores have to
extract key concepts from that articles and devise smart query rewriting rules
to harvest the most relevant tweets using the Twitter API, since no direct access
to an index is available.
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Iterative, Filtering Meta-Search (IFM)

IFM is a concrete embodiment of the carnivore architecture style [28]. IFM gen-
erates multiple subqueries based on the user query and appropriate terms from
the search context, uses a standard search engine to answer these subqueries,
and re-ranks the results of the subqueries using rank aggregation methods.

Rank Aggregation is the problem of combining several ranked lists in the best
way possible into a single ranked list. A survey of rank aggregation algorithms
is presented in [16].

Our approach of source aggregation is based on the idea of Iterative, Filtering
Meta-Search (IFM). The difference is, that our query generation phase is quite
different to that described in IFM. Furthermore, we use multiple search engines
as carnivores. Our goal is to leverage IFM to come up with great candidate
source documents that comprise the given entity in context. Instead of crawling
the Web ourselves and do all the scrubbing and pre-processing to find, locate,
and use those document sources, the existing web search engines will do this
laborious and tedious work for us.

2.2.2 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the NLP task of identifying which sense
of a word is used in a given text, when the word has multiple distinct senses. It
tries to solve the ambiguity of words.

WSD is considered an AI-complete problem, that is, a task whose solution is
at least as hard as the most difficult problems in artificial intelligence. Current
approaches can be classified into supervised, unsupervised, and knowledge-based
approaches, which are survey in [37].

Our system performs word sense disambiguation to increase relevancy during
its Source Aggregation Process, to only retrieve on-topic documents as basis for
snippet extraction. This presents a different approach, since we’re using meta-
search and rank aggregation for disambiguation. The details of this approach
are discussed in Section 3.2.

2.2.3 Text Summarization

The research area our system probably is most related with, is the field of Text
Summarization, a NLP technique to solve the problem of information overload.
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The research on text summarization dates back to the 1950s, when Luhn [31]
and [17] proposed the first automated summarization techniques. Later on, the
first linguistic approaches were proposed between 1961 and 1979 and the first
artificial intelligence approaches were presented in the 1980’s.

There are two major forms of text summarization techniques, (1) extraction
of representative paragraphs, sentences, and phrases and (2) abstraction, “a con-
cise summary of the central subject matter of a document” [41]. Furthermore
there two dimensions (Single-document vs. multi-document) and two contexts
(Query-specific vs. query-independent) for text summarization.

Related work in the fields of Traditional approaches [1, 9, 10, 24, 45], Multi-
document summarization: Summarizing differences and similarities across doc-
uments [8, 34, 42], Knowledge-rich techniques [24, 47], Recent approaches [2, 7,
22,23,25,29,46] Further readings on the topic are presented in [32,33]

The remainder of this section describes two state-of-the-art systems, that
are to some degree related to our system.

SenseBot

SenseBot4 is a semantic search engine that generates a text summary of multi-
ple web pages on the topic of the users search query and presents those along
with a cloud of concepts above the summaries.

SenseBot parses top results from the Web and prepares a text summary of
them. The summary serves as a digest on the topic of the query, blending to-
gether the most significant and relevant aspects of the search results. SenseBot
uses text mining to parse Web pages and identify their key semantic concepts
and multi-document summarization to extract the “sense” of the web pages and
present it to the user.

This approach is similar to our system, since it delivers a summary in re-
sponse to a users search query instead of a collection of links to Web pages.
This way the summary itself becomes the main result of each search. The ma-
jor differences are, that they operate in real-time and therefore only provide
summaries for only the top 10 search results of only one search engine. Fur-
thermore, their system doesn’t provide any de-duplication or quality ranking

4http://www.sensebot.net, accessed on 20/04/2010
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component.

Cpedia

Cpedia5 is an automated encyclopedia from and based on the Cuil6 search en-
gine. The main idea is to automatically generate a report or summary of the
searched topic instead of a list of ranked web results.

Cpedia algorithmically summarizes and clusters the ideas on the web for
each search query and uses this to generate a report. Furthermore, they remove
repetition and duplicated content. Similar to Wikipedia, they try to combine
all the documents written about an idea on the web to generate one article.

This approach is similar to our system, because it algorithmically discovers
web documents and extracts the most interesting information snippets for each
topic of interest. The difference is, that it then combines the extracted snippets
to one report, which is presented to the user.

2.2.4 Web Information Extraction

The field of Web Information Extraction was already discussed earlier in this
chapter. This section presents state-of-the-art WIE systems and shows how
those systems are related to our system and what the differences are.

DBpedia

DBpedia [4] is knowledge extraction framework, which goal is, to publish struc-
tured data extracted from Wikipedia. DBpedia allows to ask sophisticated
queries against Wikipedia data, and to link other data sets on the Web to
Wikipedia data.

Wikipedia is one of the biggest, freely-available entity-centric sources of in-
formation worldwide. The main difference between DBpedia and our system is,
that they use a single source of information (Wikipedia) and publish their data
in RDF. Furthermore, this is a machine-centric approach, which does not try to
analyze the quality of the data.

5http://www.cpedia.com, accessed on 20/04/2010
6http://www.cuil.com, accessed on 20/04/2010
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WebKnox

WebKnox [49] is a domain independent, self-supervised system that automati-
cally extracts entities and facts from the Web at high precision and recall.

The entity extraction component extracts entities using concept names from
their ontology. They describe three extraction techniques, which use the semi-
structure of web documents. (1) Phrase extraction, which queries search engines
and extracts patterns such as CONCEPT such as. (2) Focused crawl extraction,
which queries search engines with patterns such as list of CONCEPT and ex-
tracts entities from list structures and tables. (3) Seed extraction, which queries
search engines with patterns such as ENTITY1 ENTITY2 and extracts entities
from list structures.

The fact extraction component extracts facts using single- and multi-attribute
queries such as ENTITY + facts or the ATTRIBUTE of ENTITY is and also ex-
plodes the semi-structure of web documents. They use (1) tables, (2) colon
patterns, (3) phrases and (4) free text for extraction.

For both, entities and facts, they describe algorithms to calculate a trust
value for each extraction. In the case of entities they use a entity trust voting
algorithm that makes use of extraction graph, which is similar to PageRank [40]
and AprioriRank [20]. They take the entity trust votes it back to its source
pages. For facts they use cross-validation across multiple occurrences on differ-
ent web sites.

The main difference to our system is, that WebKnox focuses on extracting
machine-readable entities and “hard”-facts, which are facts where one true value
exists. Our system focuses on user-centric, “soft-facts”, which are represented as
snippets of text. The goal of our system is, to find snippets which are interesting
to the user, even if there is no say about this statement is either true or false.

TextRunner

TextRunner [6] is an OIE system, which performs statement extraction with a
precision of over 80%. For example, from the sentence “The iPhone 3GS even
comes with a 3MP camera and has video capability as well.”, TextRunner can
extract the entity-relation tuple (iPhone 3GS, comes with, 3MP camera).

It takes a corpus of documents as input and extracts the information in a
single pass. (1) The noun phrases of the sentence are tagged, (2) nouns that
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are close to each other are put into a candidate tuple set, and (3) the tuples are
analyzed and classified as true or false using a self-supervised classifier [52].

TextRunner stores the extracted information in natural language without
any semantic annotation or knowledge. It does not “know” what it extracts.
Its not able to answer questions such as “List all features of the iPhone 3GS”.

With its statement extraction approach, TextRunner is the IE system that is
closest related to our approach. The difference is, that our system extracts full,
user-centric sentences that are interesting to the human reader. TextRunner
on the other hand focuses on extracting as many relations as possible at high
precision, but with no regard to interestingness.

2.2.5 Near Duplicate Elimination

The Web contains multiple copies of the same content. By some estimates, as
many as 40% of the pages on the Web are duplicates of other pages. Many of
these are legitimate copies; for instance, news sites, that don’t have exclusive
material, present content provided by news agencies. Many websites use the
same agencies and therefore present the same content.

The simplest approach to detecting duplicates is to compute, for each web
page, a fingerprint that is a succinct digest of the characters on that page.
Then, whenever the fingerprints of two web pages are equal, its tested whether
the pages themselves are equal and if so declare one of them to be a dupli-
cate copy of the other. This simplistic approach fails to capture a crucial and
widespread phenomenon on the Web: near duplication.

The task of Near Duplicate Elimination is to identify these near-duplicates.
There are various methods to do so. Elmagarmid et al. [18] present and overview
of common duplicate elimination techniques. The most prominent ones are: (1)
edit distance, which is good for very short texts, (2) shingling [11], which is
good for long texts, and (3) semantic distance, which uses previous- or domain-
knowledge, to determine the “semantic distance” between two texts.

Our system deals with a special form of de-duplication, since we are inter-
ested to determine the new information gain for our snippets. Another specialty
is, that our snippets are composed of short text segments. Metzler et al. [35]
present a technique, that especially focuses on “Similarity Measures for Short
Segments of Text”.



Chapter 3

Design

This chapter describes the design of the WebSnippets system for entity-centric
snippet extraction from the Web.

First, an overview of the system is given. We then describe the source aggre-
gation process followed by a description on how the retrieval of the web pages
works. Then we present the snippet extraction process in more detail, and
go over the de-duplication process. Finally, we are reviewing how the snippet
ranking process works and show how and which snippets are stored persistently.

The WebSnippets system uses techniques that have been earlier described
in the research literature and introduces new techniques in snippet extraction
processes. The goals are to show how different techniques can work together
and complement each other and to introduce novel techniques that have not
been described in the literature yet. Existing techniques are embedded in the
design as they were described in literature and only small changes are made to
fit the design of WebSnippets.

The main contributions of the WebSnippets system are pointed out in the
particular sections and a thorough evaluation is shown in a later chapter. It
is not the aim of this chapter to use all possible aggregation, extraction and
ranking mechanisms that are possible in every combination, but to show one
embodiment that solves the problems depicted in the problem statement. The
design is guided by the requirements and research questions that motivate this
thesis paper.

26
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3.1 System Overview

The WebSnippets system comprises four components. Figure 3.1 shows an
overview of the data and processes of WebSnippets.

Start
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Aggregation 

Process

Input KnowledgeBaseEntity

Snippet 
Generation 

Process

Snippet Ranking 
Process

DeDuplication 
Process

Snippets 
DB

Web 
Result Snippet

Snippet

Snippet

Stop

Figure 3.1: Flow-diagram system-design

The source aggregation process receives entities from the knowledge base as
input, retrieves a ranked list of web results from search engines, and passes the
list to the snippet extraction process.

The snippet extraction process takes the ranked list of web results from the
source aggregation process as input, retrieves the related web pages (possibly
need to fetch or obtain a cached version), and extracts a set of snippet can-
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didates. The candidate set of snippets is then passed to the de-duplication
process, including their related web results and entities. The overall snippet
extraction process is an off-line process, so no particular requirements are given
in terms of latency and throughput.

The de-duplication process takes the snippet candidates from the snippet ex-
traction process as input, eliminates duplicates (possibly also near duplicates),
which are already stored in the database. The snippets are then passed to the
snippet ranking process.

The snippet ranking process takes the set of extracted snippet candidates
from the de-duplication process as input, extracts certain quality parameters,
and uses these parameters for regression-based ranking on a trained model. In
a final step it saves the remaining scored snippets that are not duplicates in the
database.

The source aggregation process, the snippet extraction process, the de-
duplication process and the snippet ranking process are explained in more detail
in the following sections. All processes may request additional data from exter-
nal sources.

3.2 Source Aggregation Process

The Source Aggregation Process takes an entity as input, selects a set of search
engines to query, retrieves domain knowledge from the knowledge base and
generates queries, sends the queries to the search engines, re-ranks the results
according to rank aggregation algorithms and passes an ordered list of web re-
sults to the De-Duplication Process.

The Source Aggregation Process is implemented as a web carnivore and the
design of this process is guided by the idea of IFM and Meta-search discussed
in Section 2.2.1.

Figure 3.2 shows the components in greater detail.

The design of the Source Aggregation Process is discussed in the following
subsections in greater detail starting with the selection of the appropriate search
engines, followed by the query generation component, finally describing the rank
aggregation component.
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Figure 3.2: Flow-diagram of the source aggregation process

3.2.1 Search Engine Selection

The first subtask of the Source Aggregation Process is the selection of the search
engines for the current run.

In our analogy the first task of our “carnivore” is to choose his “herbivores”,
where we choose the herbivores which offer the most “meat”.

Each search engine or information provider will have a common wrapper
and API so that there is a standardized way of accessing those. Initially we’re
hand-selecting a set of search engines where we expect good recall (e.g., Google,
Google Blog Search, Bing, ...).

Future work will be to have the carnivore to intelligently choose the indices
to query (e.g., depending on the change frequency of results lists, quality of and
quantity of extracted snippets for a given source.)

3.2.2 Query Generation

The Query Generator component implements the template approach of IFM to
build a set of queries that can be send to the search engines.

A query typically comprises the entity name plus a list of modifiers. The
modifiers are related concepts, names, or synonyms of domain knowledge that
is stored in the knowledge base.

Modifiers are primarily used to further focus the queries and help with the
disambiguation task. For instance, an entity “Washington” alone is ambiguous.
However, if there is a modifier like “place” then both combined as a simple
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AND query will result in search results more biased towards the desired entity.

There are different approaches on how context can be added to these entities
and transformed into search queries (see Kraft et al. [28] for a more detailed
study on this topic.) The modifiers are constructed or collected editorially. For
example, an editor could build a list of all travel locations in Germany and as-
sociate a few modifiers for this list. List building effort is not done by us, but
by the users of the system. The extra editorial effort needed for our system is
to provide modifiers either per list or per entity.

In our experiments the former works well and requires very minimal label-
ing work. We suggest adding modifiers per entity only in very ambiguous cases
where that extra effort would help to increase the document selection process
significantly. This typically can be achieved by having editors spot check a large
list of entities and looking at problematic terms, or combined with algorithmic
tooling that can scan entities for ambiguity. We think this is an interesting area
for future work.

In general the idea of using co-occurrences of an entity and a concept mod-
ifier and use this as an input for search engines to bias results and therefore
help with the disambiguation task itself is not new. Standard search users on
the Web doing this manually every day when they google for their information
needs. Using a query plus context itself also has been explored in the aforemen-
tioned paper in depth.

The novelty of our approach here is to leverage contextual search in a differ-
ent setup to avoid having to do complex word-sense disambiguation downstream
in our system in the filtering part. We therefore elegantly leveraging the search
engine’s algorithms to return the most relevant results for a given entity plus
modifier, and also leveraging all the work of thousands of engineers and scientists
who are tuning these major search engine on a daily basis.

3.2.3 Ranking and Filtering

We utilize rank aggregation technologies [16] that take as input a set of lists
from different search engine providers and produce one aggregated ranked list of
results. Ranking at this level is mostly useful for prioritization for the snippet
extraction process to ensure the most important documents with promising
snippets are extracted first. The actual ranking of snippets itself is described
later as part of the snippet ranking process.
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3.3 Snippet Extraction Process

The Snippet Extraction Process takes as input a ranked list of web results from
the source aggregation process, retrieves the URLs via HTTP or from a cache
and pre-processes those as a preparation step. Finally snippet candidates are
being extracted, which surround a given entity. The snippet extraction process
from Figure 3.1 is shown in more detail in Figure 3.3.

Snippet 
Extraction

WebResult

Snippet 
candidate

Input

Start

Technique 1

Technique 2

Technique 3

Technique

Stop

Choose 
technique

Figure 3.3: Flow-diagram snippet-extraction-process

The snippet extraction process can use different techniques to extract or gen-
erate the snippet candidates. These techniques are Webresult Summary (WRS),
Document Sentences (DS1) and Document Snippets (DS2).

All these techniques have in common that they get the web results from
the source aggregation process as an input and that they extract snippet candi-
dates from the content related to the web result. What that related content is,
depends on the search engine it has been queried from and the extraction tech-
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nique used. This will be explained in more detail in the remainder of this section.

Each extraction technique consists of three steps. First, the related content
retrieval step, which retrieves the raw-content related with the search result.
Second, the pre-processing step, which extracts the main content block and re-
moves unwanted characters and strings. And third, the snippet extraction step,
which finally extracts the snippet candidates. The extracted snippet candidates
are then passed to the feature extraction process.

The extraction techniques are explained in detail in the following sections.

3.3.1 Web Result Summary

The Web Result Summary (WRS) technique is a very simple one. It uses the
summary field retrieved by the search engine. This represents the impressions
Google would offer, if you would just enter the search term and read the pro-
vided summaries. This technique served as baseline for our problem validation
experiment, which will be discussed in Section 5.3.

Related Content Retrieval

This is a simple technique, which takes the summary attribute of the results
retrieved from each search engine.

The summary varies, depending on the type of search engine that was
queried. The following list describes in more detail, which data is used as the
summary attribute.

web search engine In case of a standard web search engine such as Google or
Yahoo! the retrieved results contain a title attribute, which is the title of
the linked web page, a summary attribute, which is a query-biased short
summary of the linked web page and the URL of the linked web page.

real-time search engine In case of a standard real-time search engine such as
Twitter or Facebook, which provide more like a feed of data, the retrieved
results contain possibly a title attribute, a summary attribute, which is
the tweet or feed post and a possibly URL to a related webpage.

statement search engine In case of a statement search engine such as Tex-
tRunner, the retrieved results contain no title attribute, a summary at-
tribute, which is the extracted statement and a URL, which points to the
originating document, the statement was extracted from.
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Pre-Processing

Depending on the search engine itself, which was queried, the raw-content of
the summary attribute may contain a strong BIAS. For example in Twitter the
typical tweet contain a lot of sequences such as RT @user:, #tag or upper-case
text. To compare , we remove this BIAS from the summaries in a homogeneous
way, to obfuscate the source of the snippet.

The following BIAS is removed from the summary:

BIAS-removal action Example

remove tabs, line breaks and multiple whitespaces the iphone

convert to lowercase THE VERY COOL IPHONE

remove any XML/HTML tags and entities <tag> or &entity;

remove any re-tweets and twitter tags RT @user: or #tag

remove any URLs http://tinyurl.org/nacs89d

Snippet Extraction

In this simple technique, we don’t apply any intelligence on the snippet candi-
date generation. The summary attribute is removed of any BIAS as shown above
and the resulting string is added to the set of extracted snippet candidates, that
are passed to the next processing step.

String summary = removeBIAS(webresult.getSummary());

Snippet snippet = new Snippet(entity, webresult, summary);

results.add(snippet);

Search engines such as Google constantly improve the quality of their web
result summaries. In the early years only the description meta tag from the
linked web page was shown, if one existed. If the description was missing, the
web result summary was left blank.

Later on Google started to apply more intelligence to display a good sum-
mary, for example by showing the DMOZ in certain cases was better than the
description meta tag provide by the page author. Currently Google shows very
precise query-biased summaries of the page (dynamic summaries), focusing on
the best passage the query is mentioned.

But all these snippets are still a summary of the content of the web page, and
the focus is not to display entity-centric information in-place, such as WebSnip-
pet does. To demonstrate the differences we show a best-case and a worst-case



CHAPTER 3. DESIGN 34

scenario of summary snippets retrieved by a web search engine for the use case,
which guides this thesis.

Figure 3.5 shows an example of a good entity-centric snippet, which contains
relevant and interesting information about an entity, retrieved by a web search
engine.

iPhone 3GS is a GSM cell phone that’s also an iPod, a video camera,

and a mobile Internet device with email and GPS maps.

Figure 3.4: A best-case sample of a web result summary

In contrast, Figure 3.5 shows an example of a bad example of an entity-
centric snippet, which contains neither relevant nor interesting information
about the entity.

iPhone; iPod; Previous iPods. iPhone 3GS iPhone 3GS; iPhone 3G

iPhone 3G; iPhone iPhone; iPod classic 3G iPod classic 3G;

iPod nano 5G iPod nano 5G ...

Figure 3.5: A worst-case sample of a web result summary

This technique produces exactly one snippet candidate per web result.

3.3.2 Document Sentences

The Document Sentences (DS1) technique is more sophisticated than WRS.

Based on our assumption that the most relevant and interesting content
is buried deep inside the web results (and their content pages), DS1 uses the
URL field of each web result to retrieve a related web page or document and
extracts all sentences containing the entity from the main content section of the
document. These sentences are the snippet candidates.

Related Content Retrieval

The related web pages or documents mentioned in the URL attribute of each
web result are downloaded from the web. This can be optimized for performance
reasons to add a cache store.
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Pre-Processing

The main component are is extracted from the retrieved document. The main
content extraction varies depending on the document retrieved. The main idea
is to remove navigation, ads, etc.

Snippet Extraction

The snippet extraction makes intensive use of the NLP processing chain dis-
cussed in Section 2.1.4. First, the main content block is segmented into sentence
chunks. Then if the sentence contains at least one mention of the entity, it is
added to the set of snippet candidates.

This technique produces an uncertain number of snippet candidates per web
result, depending on the number of sentences with entity occurrences in the
linked document.

3.3.3 Document Snippets

The Document Snippets (DS2) technique is a more sophisticated version of DS1.
DS2 generates less snippet candidates by applying certain filters while snippet
extraction. Furthermore the pre-processing step combines the pre-processing
steps of WRS and DS1.

Related Content Retrieval

The raw-content retrieval strategy for the related-documents is the same as in
DS1. The related web pages are downloaded from the Web.

Pre-Processing

The pre-processing step of DS2 combines the pre-processing steps of WRS and
DS1 by first applying WRSs pre-processing on each snippet candidate plus ex-
tracting the main content block as described in DS1.

Snippet Extraction

The snippet extraction part of DS2 extends the capabilities of DS1. The im-
provement is that it applies additional filters on the snippet candidate set by
removing snippet candidates of certain patterns. Those patterns were deter-
mined by our observations of candidates generated by DS1.

Trim Sentence Sentence with leading and trailing whitespaces omitted.
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Sentence Length Sentence length is greater than 0 characters.

Regular Sentence A sentence must contain two nouns and one verb including
“to be”, “to have” or “to do”.

Upper Case Letter Sentence starts with an uppercase letter.

3.4 De-Duplication Process

The De-Duplication Process takes as input a set of snippet candidates from the
Snippet Extraction Process, applies several de-duplication strategies as filters
to reduce the amount of duplicate or similar snippets and passes the rest to the
Snippet Ranking Process.

DeDuplication

Snippet 
Candidates

Input

Start

Stop

Clustering

MD5 Lookup

Shingles Lookup

Snippets 
DB

:

Figure 3.6: Flow-diagram of the De-Duplication Process

Our experiments show, that throughout the Web and especially in news feeds
or on news sites, there is much information duplication and re-occurrence. For
example, many news sites show the same ticker message from the same news
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agency. This resulted in lots of duplicate or similar snippets.

Frankfurt is a city in Hesse

Frankfurt is a big city in Hesse

Figure 3.7: Sample of near-duplicate snippets for “Frankfurt”

To avoid showing up or even having the same content stored in the snippet
database, we added the de-duplication process. The task of the de-duplication
process is to add snippets only to entities that comprise new knowledge. In
section 2.2.5 we already discussed various methods to determine new informa-
tion gain. Figure 3.7 shows an example of near-duplicate snippets for the entity
“Frankfurt”.

As a simple strategy for the lookup of exact duplicates, we propose to cal-
culate the MD5 hash of the snippet text and store it in the database together
with the snippet. This achieves good performance for looking up the existence
of a snippet. To detect near-duplicates we propose a shingling approach, which
were already described in the background chapter.

A second strategy we propose is to cluster the snippets by various aspects.
Snippets can be clustered by topic based on their similarity-measures or based
on the relation, based on our ontology knowledge of the entity and the snippets.

Another aspect is, that by reducing the amount of duplicate and similar
snippets, we increase the performance of our system, because we need to score
and store less snippets and therefore can lookup snippets more efficient.

The de-duplication process from Figure 3.1 is shown in more detail in Figure
3.6.

3.5 Snippet Ranking Process

The Snippet Ranking Process takes the set of snippet candidates from the de-
duplication process as input and extracts certain features used for determining
their quality. There has been lots of research into whats good and bad in terms
of text quality. Given the extracted features, we use a machine learning ap-
proach to learn, which snippets are the “best”.
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Figure 3.8: Flow-diagram of the Snippet Ranking Process

The snippet ranking process from Figure 3.1 is shown in more detail in
Figure 3.8. The ranking process consists of two parts. In the first part a feature
vector for regression analysis is constructed. The second part describes the
ranking/scoring process in greater detail.

3.5.1 Feature Extraction

The feature extraction takes the snippet as input including the aggregated web
result and the search engine the web result was retrieved from. Then in a series
of extraction steps, it builds up a feature vector based on features extracted,
collected and generated from the snippet, its source document and source search
engine the web result was retrieved from.

We experimented with several extracted features that we use as indicators to
determine the snippet quality. The following subsections describe the features
our systems extracts, aggregates or retrieves for each snippet. Furthermore we
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explain, why we choose each feature.

Search Engine Features

First we extract features about the search engine we used to retrieve the web
results from.

Aggregated Rank The source aggregation process retrieves web results from
different search engines and combines them into one ranked list of aggre-
gated results. We use the rank of each aggregated result as feature for
each snippet to determine how important the document is in average.

Search Engines This is a list of search engines the related document was
contained in. Some search engines might return better or worse results.
Therefore we use the mentioning in a search engine as indicator.

Source Document Features

Then we extract features about the source document we used to extract the
snippet candidate from.

Google Page Rank The Google Page Rank provides information about the
source documents prominence in the Web. Very popular sites such as
Wikipedia might contain more interesting and valuable information than
smaller or spam sites.

Top Level Domain The Top Level Domain, such as .com, .edu, .travel might
contain relevant information about the class of document, which is pro-
vided. For example if it is from a .travel or an educational source (.edu).

Main Content Character Percentage The main content character percent-
age provides information about how many characters of the source docu-
ment were actually in the main content block.

Readablity Features

Readability features are used to determine the quality of how good a snippet is
readable by the user. They were chosen to show the “best” readable snippets
to the user. These indices are discussed in section 2.1.4 in detail. Readability
features are extracted from the snippet text.

We use the following readability features: The Flesch-Kincaid Reading Ease,
the Gunning-Fog Score, the Flesch-Kincaid Grade Level, the Automated Read-
ability Index, the Coleman-Liau Index, and the SMOG Index.
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Syntactic Features

We extract syntactic features of each snippet as indicator for quality. These are
mostly text statistics values.

Character Count The number of characters of the snippets.

Letter Number Percentage The percentage of alpha-numeric characters.

Capitalized word count The number of capitalized words in the snippet text.

Syllable Per Word Count The average number of syllables per word in the
snippet text.

Word Count The number of words in the snippet text.

Unique Word Count The number of unique words in the snippet text.

Complex Word Percentage The percentage of complex words in the snippet
text. A word consisting of three or more syllables is considered “complex”.

Sentence Count The number of sentences in the snippet text.

Words Per Sentence Count The average number of words per sentence in
the snippet text.

Contains proper noun Whether the snippet text contains a proper noun.

Semantic Features

To complete the feature vector, we also extract semantic features from each
snippet.

Entity concept This feature look for the occurrence of the concept name or
one of its synonyms of the current entity. For example, “the city of Frank-
furt” would count as an occurrence, if the entity was Frankfurt, but “the
soccer team Eintracht Frankfurt” would not. The idea is to get more clues
for word sense disambiguation and therefore relevancy.

Starts with entity This features is 1 if the snippet text starts with the men-
tioning of the entity. For example, “Frankfurt is the financial center of
Germany” would count as 1, while “We like to visit cities such as Frankfurt
and Munich”.

Related entity count This counts the number of occurrences of entities of the
same concept in the snippet. For example, “Munich, Frankfurt, Berlin,
Hamburg and Cologne are the biggest cities in Germany.” We use our
concept network to lookup the number of entity occurrences in this snip-
pet.
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3.5.2 Feature Learning and Ranking

The extracted features are used to calculate a regression score per snippet based
on a trained regression model. The foundations of machine learning and regres-
sion analysis were discussed in section 2.1.5 in detail.

For our system we used a simple linear regression algorithm and trained a
model based on a collection of 200 snippets, which have been editorially scored.
The model is trained on the overall features of all snippets.

With more samples it is also possible to train multiple models on a concept-
or on an entity-level. But for our system we trained only one model on a random
distribution of snippets from different concepts. This is described in further de-
tail in section 5.2.2 in the evaluation chapter.

After the regression score has been calculated, the snippets are stored per-
sistent in the snippet database and can be retrieved by the end-system ordered
descending by their regression score. The persistence is described in more detail
in the next section.

3.6 Persistence

Extracted snippets as well as their sources are stored in a database. The
database is designed as shown in the E/R diagram in Figure 3.9.

The Knowledge Model is the database equivalent for the knowledge ontology.
A concept can have many attributes and those can have many facts. A concept
can also have many entities and those can have many facts and many snippets.

Entities, facts and snippets can occur on many sources and a variety of en-
tities, facts and snippets can occur on one single source, therefore the N to M
relation between entity, fact, snippet and source.

For entities and facts the trust values are stored, which makes it possible
to rank the tuples by their trust later on. Similarly, for snippets the regression
score is stored which is used to rank the snippet by their quality.

For the training of the regression model described in section , several evalua-
tions are stored in the database for each snippet. These evaluations are provided
by human experts.
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Figure 3.9: Entity Relationship Diagram of the database design

3.7 Summary

In this chapter, the design of WebSnippets has been presented. The system
comprises four components, the source aggregation process, the snippet extrac-
tion process, the de-duplication process, and the snippet ranking process, which
have been discussed in detail.

The WebSnippets system is proposed as a web carnivore. Following this con-
cept we increase relevance by facilitating meta-search and rank-aggregation for
disambiguation. Furthermore, we propose three new snippet candidate building
techniques. For snippet quality scoring we use a regression-based approach.

Before the designed system is evaluated, details about the implementation
are provided in the next chapter.
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Implementation

The previous chapter described the algorithms to extract and rank entity-centric
snippets. We show now how this can be implemented for a particular embod-
iment to point out practical and system aspects, as well as performance and
scalability issues.

4.1 Technology

This section depicts the technology used by WebSnippets starting with engineer-
ing aspects. In the first part the programming language is discussed, in which
the prototype was implemented. The second part introduces the libraries and
web services used within the prototype. The third part introduces WebKnox,
the framework which has been used to implement our prototype.

4.1.1 Development Languages

The prototype of WebSnippets is implemented within WebKnox (see Section
4.1.3), which has been developed in Java 1.6.

Java is an object oriented programming (OOP) language, which provides a
large set of standard data structures, classes and methods, which can easily be
extended as further functionality is required. Whenever a functionality is not
supported by the standard Java API, a wide variety of free, well-documented
packages are available to enhance the standard API of Java.

Java is available under the free GPL open-source license and has a wide plat-
form support. For example, it is available under the major operating system
such as Windows, Linux, Mac OSX, and Unix. Java also has a strong developer
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community, which publishes a lot of useful libraries to enhance the core func-
tionality of Java. The support regarding tools and documentation is superior
to most other OOP languages.

Java seems to be the most often used programming language in current
computer science research as many major research frameworks are available in
Java first. All theses reasons led to the choice of Java over other alternatives.

4.1.2 Frameworks and Libraries

The core functionality of Java can easily be extended by including packages from
third party developers. WebSnippets makes extensive use of those extensions
and includes a variety of frameworks and APIs. The most relevant of them are
briefly discussed in this section.

AlchemyAPI AlchemyAPI is a web service provider1, which offers services
for performing content analysis and meta-data annotation on web pages and
posted HTML pages or plain texts. The service is accessed through a tiny Java
library.

For HTML pre-processing and main content extraction of webpages, Web-
Snippets uses a web service called “Text Extraction / Web Page Cleaning” which
normalizes HTML content by removing ads, navigation links, other undesirable
content, and only extracts the key article or web page text.

Fathom Fathom is a Java package2, that measures the readability of English
text. The package allows to generate common readability indices from English
text.

Supported features are Fog Index, Flesch reading ease level, Flesch-Kincaid
grade level score as well as common text statistics such as complex words count,
syllable count and sentence count, which are discussed in detail in Section 2.1.4.
These scores are used in the WebSnippets snippet ranking component, which is
explained in Section 3.5.

1http://www.apchemyapi.com, accessed on 22/11/2009
2http://www.representqueens.com/fathom/, accessed on 22/11/2009
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Google PageRank API Google PageRank API is a Java package3, which
retrieves Google Page Rank for any domain from Google Toolbar4. Google Page
Rank is a numeric value that represents how important a page is on the web [40].

LingPine LingPine is a Java package5 for natural language processing. Ling-
Pipe provides classes for tokenization, sentence detection, named entity detec-
tion (NER), coreference resolution (co-ref), classification, clustering, part-of-
speech tagging (POS), general chunking and fuzzy dictionary matching.

WebSnippets makes extensive use of chunking, sentence detection, POS,
NER and fuzzy dictionary matching.

Twitter4J Twitter4J is a Java library6 for accessing the Twitter web ser-
vices. It provides a full feature set, which includes retrieving tweets for users,
topics and trends. WebSnippets uses Twitter4J to retrieve tweets that contain
metionings of entities.

WEKA WEKA7 is a collection of machine learning algorithms for data min-
ing tasks. Weka contains tools for data pre-processing, classification, regression,
clustering, association rules, and visualization.

WEKA is one of the most relevant and best supported machine learning
frameworks in Java. WebSnippets uses WEKA in the snippet ranking process,
which is explained in Section 3.5, to rank the snippet based on the extracted
snippet freatures and a trained regression model.

WebKnox WebKnox8 is a web information extraction toolkit implemented
in Java. WebKnox features are described in detail in Section 4.1.3.

3http://www.temesoft.com/google-pagerank-api.jsp, accessed on 22/11/2009
4http://toolbarqueries.google.com, accessed on 30/03/2010
5http://alias-i.com/lingpipe/, accessed on 22/11/2009
6http://twitter4j.org/, accessed on 31/03/2010
7http://www.cs.waikato.ac.nz/~ml/weka/index.html, accessed on 22/11/2009
8http://www.inf.tu-dresden.de/index.php?node_id=578&refer_id=579&refer_sID=

5&ID=117&ln=de, accessed on 22/11/2009
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4.1.3 WebKnox

One implementational requirement of the thesis was, that the prototype has
to be implemented using WebKnox as framework, which is described in [49] in
greater detail.

WebKnox is an extraction framework of the computer networks chair of the
Technische Universität Dresden and part of the Aletheia9 research project. Fig-
ure 4.1 gives an high-level overview of the WebKnox research project.

Figure 4.1: WebKnox high-level overview

The WebKnox system consists of several core packages that are explained in
more detail in this section. Figure 4.2 gives an overview of these packages. The
bold packages are extended and the italic packages are used by WebSnippets as
described in 4.2.

Control-Package The control package consists of a controller class that in-
stantiates the graphical user interface and is the entry point for the WebKnox
core application.

Graphical User Interface-Package The Graphical User Interface (GUI)
package consists of a GUI manager class that manages the complete layout of
the WebKnox core application. The interface offers functionality to launch the

9http://www.aletheia-projekt.de/, accessed on 31/03/2010
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Figure 4.2: Class-diagram of WebKnox packages

extraction processes, performs cleansing and emptying operations on data and
knowledge base, creates reports about the extracted data, and shows real-time
logging data.

Reporting-Package The reporting package consists of classes that provide
functionality to generate reports for entities and facts as well as a chart creator
class. A report is a list of measures and calculations such as total number of
entities and facts, precision and the F1 score.

Extraction-Package The extraction package consists of all classes that are
part of the extraction process. This includes Focused Crawl Extraction for entity
extraction, Page Analysis and Extraction Sequence for fact extraction.

Knowledge-Package The knowledge package consists of container classes
that keep extracted knowledge in memory, such as Concept, Attribute, Entity,
Fact, Snippet and WebResult.
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Web-Package The web package consists of classes that are the interface be-
tween WebKnox and the web. These classes are the Crawler, which downloads
web pages, the SourceRetriever which is able to retrieve URLs from Google,
Haika, Microsoft Live Search and Yahoo!.

Multimedia-Package The multimedia package consists of classes that deal
with the extraction and handling of images.

Classification-Package The classification package consists of classes that
deal with machine learning tasks. The abstract Classifier class provides mean to
operate on data stored in the MySQL database and perform algorithms provided
by WEKA on the data.

Tagging-Package The tagging package consists of classes that deal with nat-
ural language tasks, such as Named Entity Recognition (NER).

Helper-Package The helper package consists of helper classes that extend the
capabilities of Java such as CollectionHelper, ThreadHelper, and StringHelper,
and provide useful functions that can be used throughout WebKnox. The Logger
class is also part of this package.

Persistence-Package The persistence package consists of classes that read
from and write to disk, which includes config files, OWL files, the Lucene index
and the MySQL database.

Normalization-Package The normalization package consists of the DateNor-
malizer, the StringNormalizer and the UnitNormalizer classes. These classes
are responsible for transforming different fact representations into a common
format.

4.2 System Architecture

The WebSnippets design proposed in the previous chapter has been implemented
as a prototype within WebKnox, as described in Section 4.1.3. Therefore the
package structure of WebKnox has been used, and additional classes have been
added to fit the needs for the WebSnippets system.

Figure 4.2 shows the core packages of WebKnox. All packages that are af-
fected of the WebSnippets system are highlighted in bold. Other packages used
by WebSnippets are highlighted in italic. The classes that have been added or
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affected by WebSnippets are described in more detail in the following subsec-
tions.

To streamline the development process, the WebSnippets prototype makes
extensive use of 3rd party libraries and web services. All full list had been pre-
sented in Section 4.1.2.

Figure 4.2 gives an overview of these packages, packages that are not relevant
for the implementation of WebSnippets have been left out.

4.2.1 Persistence

To fit the requirements of WebSnippets, the WebKnox database schema has
been altered, to store additionally required data. This section discusses the ta-
bles that have been added in detail.

Each table has a corresponding class which is part of the Knowledge package.
It serves as object representation of the data stored in the table.

Snippet

First the snippets have to be stored. Therefore we added a snippets table and a
corresponding Snippet class. The entity class provides a method classify(),
which calculates the quality score based on the SnippetClassifier class, which
will be discussed later in this Section.

Snippets

ID INTEGER Primary key of the Snippet

ENTITY ID INTEGER Reference to the related Entity

SOURCE ID INTEGER Reference to the related Source

TEXT TEXT Content of the Snippet

EXTRACTED AT DATETIME Date/time of creation

F * FLOAT Features extracted from the Snippet

SCORE * FLOAT The regression scores for the Snippet

Table 4.1: Database schema for snippets

Table 4.1 shows the database schema used for the storage of snippets. When
the extraction process extracts a set of snippets for an entity, this results in an
entries of the relation Snippet.
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Source

The Source class of WebKnox has been extended to store additional values
and provide additional functionality. First the capability to retrieve the main
content block from the URL was added. Then the capability of retrieving Google
Page Rank for the URL was also added.

WebResult

The WebResult class is an in memory container class for the retrieved WebResults.
It is used to generate the AggregatedResult instances.

AggregatedResult

The AggregatedResults generated by the SourceAggregator contain refer-
ences to the WebResults they result from, as well as an aggregated rank value.
They are also not stored in the database directly, but keep a reference to the
Source to which they refer.

Search Engine IDs

The Search Engine IDs are defined in the SourceRetrieverManager class of the
web package. The following Search Engines have been implemented including
their IDs.

Search Engine IDs

1 Web Search Yahoo!

2 Web Search Google

3 Web Search Microsoft Live

4 Semantic Search Hakia

5 Custom Search Yahoo! Boss

6 Web Search Bing

7 Real-Time Search Twitter

8 Blog Search Google Blogs Search

9 Statement Search Textrunner

99 Editorial Content -

Table 4.2: Search Engine IDs used in WebSnippets

DatabaseManager

To store data in and retrieve data from the database, WebKnox provides the
DatabaseManager, described in section 4.1. The DatabaseManager is part of



CHAPTER 4. IMPLEMENTATION 51

WebKnox Persistence-Package.

The DatabaseManager has been implemented to provide the additional ca-
pabilities to store new snippets, update the snippets regression rank and check
whether a snippet is already stored in the database.

Furthermore the DatabaseManager has been extended to also persist the
extracted snippets for a given KnowledgeManager.

4.2.2 Lifecycle

This section describes a full snippet extraction cycle as described in chapter
3. Figure 4.3 depicts the lifecycle of the extraction cycle and describes the
threading-model in detail.

Entity
Snippet
Extraction
Tread

Source
Aggregator

aggregateWebResults()

Snippet
Builder

extractSnippets()

Duplicate
Detection

removeDuplicates()

Snippet
Feature
Extractor

setFeatures()

Snippet
Classifier

classify()

Figure 4.3: Sequence-diagram websnippets

The WebKnox prototype has been implemented to run in batch-mode, which
means for every run a full extraction cycle for all entities in the knowledge-base
is performed.

One requirement of the system design was, that the WebKnox system pro-
vides a scalable infrastructure. Therefore, the prototype make extensive use of
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threading. The threading model was implemented through the SnippetExtractor
and EntitySnippetExtractionThread classes. Those classes will be discussed
in detail in the following subsections.

SnippetExtractor

The SnippetExtractor is a subclass of the abstract Extractor class provided
by WebKnox. WebSnippets extends this singleton class with the SnippetExtractor,
which retrieves all entities from the knowledge base and schedules k thread runs
in parallel, where k is the number of entities.

For each entity a separate thread is started. Each thread is a subclass of
EntitySnippetExtractionThread, which will be explained in the next subsec-
tion. To avoid overloading the system, we implemented a threading queue to
only run i threads in parallel, where i was 3 in our experiments.

EntitySnippetExtractionThread

The EntitySnippetExtractionThread is instantiated by the SnippetExtractor
on a per-entity basis. Each instance is responsible for handling and controlling
the execution of the source aggregation process, the snippet extraction process,
the de-duplication process and the snippet ranking process as described in sec-
tion 3.2. The implementation details of each process are explained in detail in
the remainder of this section.

4.2.3 Source Aggregation Process

The Source Aggregation Process is implement through several classes, which are
located in the web package and will be discussed in detail in the remainder of
this subsection. The design of the Source Aggregation Process has already been
discussed in section 3.2.

SourceRetriever

The SourceRetriever class is provided by WebKnox. The WebKnox version
provides functionality to query four search engines (Google, Haika, Microsoft
Live, and Yahoo) and retrieve a list of URLs.

We extended the class to return the full web results as described in section 1.1
including title, summary, rank and the URL. Furthermore, we added additional
search engines as described in subsection 4.2.1.
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SourceAggregator

The SourceAggregator class has been added to implement a web carnivore,
which is described in section ??. The class acts as an interface for a collection
of source aggregation algorithms.

We implemented the IFM [28] algorithm as described in section 3.2. It
aggregates a set of WebResults given an entity-centric SnippetQuery using the
SourceRetriever class and combines the web results from all search engines
that have been queried into one ranked list of AggregatedResults using the
RankAggregator class.

RankAggregator

The RankAggregator class acts as interface to different rank aggregation algo-
rithms it provides. In the prototype implementation we implemented RankAv-
erage as described in section 3.2.3.

SnippetQuery

The SnippetQuery class acts as query template builder factory. Given an entity,
it generates a set of queries, which are sent to the search engines. It’s design
has been discussed in section 3.2.2.

4.2.4 Snippet Extraction Process

The Snippet Extraction Process is implement through a single SnippetBuilder

class, which is located in the extraction package. The design of the Snippet
Extraction Process has already been discussed in section 3.3.

SnippetBuilder

The SnippetBuilder class serves as interface to different snippet extraction
techniques. We implemented WRS, DS1 and DS2 as described in section 3.3 in
detail. All these techniques have in common that they receive the Entity and
an AggregatedResult as input and return a set of Snippets.

WRS WRS takes the summary of the first web result from the aggregated
result object and removes the BIAS.

DS1 DS1 retrieves the main content section from the linked document us-
ing the AlchemyAPI, which has been described earlier. As the next step it
tokenizes the main content part using an IndoEuropeanTokenizer from the
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LinqPipe framework into sentence chunks.

Next we check each sentence chunk if it contains our entity using an approximate-
based chunker also from LingPipe. The chunker receives a dictionary of spellings
and synonyms of our entity as input plus a maximum edit distance, which is
two in our case. If the sentence contains a mentioning of our entity, its added
to the set of snippet candidates.

DS2 DS2 works very much the same as DS1, but it makes use of a part-of-
speech tagger, which has been trained on the Brown corpus using a Hidden-
Markov-Model.

Based on the part-of-speech tags we filter out sentences that do not contain
at least two nouns and one verb. Additionally each sentence has to start with
an uppercase letter. If so, the sentence is added to the set of snippet candidates.

4.2.5 De-Duplication Process

The De-Duplication Process is implement through a single SnippetDuplicateDetection
class, which is located in the extraction package. The design of the De-Duplication
Process has already been discussed in section 3.4.

SnippetDuplicateDetection

The SnippetDuplicateDetection class serves as interface to different de-duplication
techniques and algorithms. We implemented a simple lookup mechanism to
eliminate exact duplicates within the list of snippet candidates.

The algorithm checks whether the exact snippet is either extracted multiple
times during the current run or whether it is already contained in the database.
If so, the snippet is removed from the set of candidates.

Other de-duplication techniques were already discussed in section 2.2.5 and
the SimMetrics plugin discussed in section 4.1.2 also provides various different
algorithms for that problem.

4.2.6 Snippet Ranking Process

The Snippet Ranking Process is implemented using a machine learning approach
that is described in Section 3.5 in greater detail.
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SnippetFeatureExtractor

The first part of the process is to extract the relevant features from the snippet
candidates. This is implemented in the SnippetFeatureExtractor class, which
is part of the classification package.

The feature extraction class implements the extractFeatures() method,
which gets the snippet as input an extracts, generates and retrieves the feature
vector as described in section 3.5.1.

SnippetClassifier

The second part is to apply the regression analysis on each snippet. This is
done through the SnippetClassifier class, which is an extension of WebKnox
Classifier class and located in the Classification-Package.

We use the SimpleRegression regression learner of the WEKA framework.

4.3 Engineering Issues

This section explains the engineering problems that occurred during the devel-
opment of the prototype system and how we solved it.

Disabiguation The first challenge was to disambiguate the web results and
related documents that were retrieved by the source aggregation process.
This was solved using intelligent query rewriting and rank aggregation as
described in the design chapter.

Main Content Block The second challenge was to retrieve the main content
block from the related documents. First we just removed the HTML
tags, but that resulted in very bad snippet candidates. Next we tried
using WebKnox XPaths, which was better but still gave us lots of chunk
content.

Finally we solved the issue by using AlchemyAPI web service, which uses
sophisticated machine learning algorithms and trained models. This is
still not perfect, but gave a reasonable main content block, which we used
for snippet candidate extraction.

Sentence Chunking The third challenge was to separate the main content
block into sentence chunks. First we took a simple approach by just sepa-
rating by . (dot) ; (semicolon) ! (exclamationmark) and ? (questionmark).
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This didn’t result in good sentence boundaries. Next, we tried to use We-
bKnox ’s sentence chunker, which gave reasonably good results.

Finally we tried LingPipe’s Indo-European sentence chunker, which pro-
vided most precise results.

Named Entity Recognition The next challenge was to recognize sentences
that contained the searched entity. First we tried simple string matching,
but that missed most of the entities because of different spelling and pre-
sentation. Next we lowercased the entities, which caught more entities,
but still very few.

Finally we solved the problem by using a dictionary- and proximity-based
NER component from LingPipe.

Memory Consumption The first extraction run failed completely and stopped
the entire application with an out of memory error. We found out take
we needed to increase the Java heap memory (to 1 gigabyte in our case),
which is 128 megabytes per default.

After further investigation we found out, that the real problem was to keep
all extractions in memory until all snippets for all entities were extracted.
We were able to reduce the memory consumption considerably by writing
results to the database after each entity extraction loop and destroyed the
object references afterwards.

Performance Bottlenecks The next extraction loop worked but took a very
long time to complete. The reason for this was, that each extraction loop
was run in serial. We were able to reduce the extraction for all entities by
using WebKnox ’s threading model.

The first major optimization was to encapsulate each per-entity extrac-
tion loop into its own process. Our experiment showed that three treads
working in parallel produced a good performance gain for our system.

The next optimization was, to parallelize the search engine querying. Since
we send several queries to a number of search engines, we were able to
parallelize those queries to one thread for each query/search engine com-
bination. After all threads complete, we perform rank aggregation of the
retrieved lists of web results.

The last optimization was to parallelize the document retrieval and snippet
candidate extraction for each aggregated web result in the case of DS1 and
DS2.
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4.4 Summary

In this chapter we explained the architecture of WebSnippets in more detail
and the most important packages and classes were described. The chapter also
enumerated which programming languages and which frameworks / APIs have
been used to implement and enhance the system.

The next chapter evaluates WebSnippets in a series of experiments starting
with a problem validation.



Chapter 5

Evaluation

In this chapter we are evaluating the overall performance and quality of the
proposed algorithms. For this purpose we conducted a thorough user study with
human judges that that were shown a set of guidelines, and then were asked
to judge snippets and applying the criteria in the guidelines. Those judgments
then were aggregated. The final results are presented below followed by a result
discussion.

5.1 Introduction

In a typical information extraction system (see Section 2.1.2), the implicit con-
sumer of the results was again a machine, e.g. a knowledge base or semantic
content store. Thus precision and recall were the natural measures in such sys-
tems, with maximum precision and maximum recall being the ideal. We refer
to these works as machine-centric extraction systems.

When it comes to user-centric extraction systems, we claim that the simple
goals of maximum precision and maximum recall are not optimal since they
measure only the quantity but not the quality of the displayed results.

For our scenario quality matters, because users may not necessarily want
to see every possible snippet for an entity because not every single snippet is
necessarily relevant to the entity, nor is it necessarily interesting. Displaying
such irrelevant or uninteresting snippets is a nuisance and a distraction.

Given the above issues we propose to evaluate the quality of user-centric
extraction systems along three core dimensions:

58



CHAPTER 5. EVALUATION 59

Relevance Is the presented information relevant to the entity in question?

Interestingness Is the presented information interesting in general?

Curiosity Is the presented information interesting enough to the reader to
warrant further action or investigation?

We distinguish between user-centric and machine-centric information extrac-
tion systems, and argue that for the former the simple precision/recall scores
fail to accurately reflect the quality of extracted information. Therefore we
propose to measure the quality of extracted information within user-centric ex-
traction systems in the three core dimensions mentioned above. This evaluation
methodology is adopted from [51].

5.2 Methodology

We describe the methodology used to evaluate the WebSnippets system along
the three aforementioned criteria – relevancy, interestingness, and curiosity.

Our standard evaluation methodology consists of a team of human judges
rating the snippets extracted and presented by WebSnippets. Using an interface
specifically designed for this task (see Figure 5.1), the extracted set of snippets
is grouped by entity and presented to the judges. A judge is asked to read the
snippet carefully prior to issuing any judgments. The judge is then asked to rate
each snippet per entity in terms of its relevancy, interestingness, and curiosity.

Figure 5.1: Screenshot of the Evaluation Tool
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5.2.1 Baseline

To evaluate our system and prove our hypothesis, we compared our system to
state-of-the-art search systems as well as editorially picked results. We used
results from the following search engines as baseline.

• Google Web Search, as state of the art in web search

• Google Blogs Search, as state of the art in blog search

• Twitter Search, as state of the art in real-time search

• Editorial Picks, as gold standard for such a scenario (see Appendix A).

The presented baseline snippets are the summaries of the top-3 web results
returned by the above mentioned providers. We proposed, implemented, and
described this technique as WRS in Section 3.3.1.

5.2.2 Test Set

The Test Set was thoroughly chosen containing 20 different entities out of four
different categories. The categories where products, places, people and organi-
zations, which is a default for IE tasks.

The entities for each concept were chosen manually by applying the following
criteria to gain a more representative sample for each concept. Each category
consists of four well known and one less known entities.

Products Places

Palm Pre Cell Phone San Francisco City

MacBook Pro Laptop Frankfurt City

Bugatti Veyron 16.4 Car Riesa Town

Volvo C30 BEV Car Gilroy Town

The Lost Symbol Book Luxor Village

People Organizations

Barack Obama Politician Yahoo Inc. Company

Amy MacDonald Musician AT&T Inc. Company

Robin Williams Actor Rotary International NGO

Bill Gates Founder IKEA Company

Reiner Kraft Researcher Live Like a German Company

Table 5.1: Test set used for evaluation

Table 5.1 shows the entities of the test set used for evaluation. The first row
presents the entities name, the second column shows the entities concept name.
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5.2.3 Evaluation Guideline

The Evaluation Guideline is presented to the editors before they start the survey.
The guideline provides the editors with precise instructions on how to answer
each question and gives examples for each possible choice.

Question 1: Evaluation of Relevancy

The Relevany is evaluated to determine whether the summary provides on-topic
information for the specified entity. The following guideline for evaluation of
relevancy is provided to the editors:

• Does the summary provide on-topic information for the specified object?

• Is the summary provided in any way relevant to the object named above
(in the title).

• Relevant are facts and opinions of any kind, as long as they are on-topic.

• Summaries must refer to or must provide information about the object
directly.

• Summaries of websites that are talking about an object are considered
somewhat relevant.

• The object in question must be the subject of the sentence or paragraph
to be relevant.

The judges can select from the following choices:

Relevant – An example: “iPhone 3GS is a GSM cell phone that’s also an iPod,
a video camera, and a mobile Internet device with email and GPS maps.”

Somewhat Relevant – An example: “AT&T, Inc. has seen incredible gain
on the back of the Apple iPhone in the last two years.”

Not Relevant – An example: “iPhone Halloween Costumes Make Us Jealous,
Cost $2,000 To Build: Looking for the best halloween costume ever?”

Question 2: Evaluation of Interestingness

The Interestingness is evaluated to determine whether the provided informa-
tion is interesting. The following guideline for evaluation of interestingness is
provided to the editors:

• Do you find the information provided interesting?
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• Does the provided summary contain any interesting information.

• Interesting are facts, experiences, opinions, etc. about the object in ques-
tion.

• A summary is interesting if it is easily understood by the reader, po-
tentially useful, novel, or validates some hypothesis that a user seeks to
confirm.

The judges can select from the following choices:

Very Interesting – An example: “The iPhone 3GS finally adds common cell
phone features like multimedia messaging, video recording, and voice di-
aling.”

Somewhat Interesting – An example: “The iPhone 3GS doesn’t make the
same grand leap that the iPhone 3G made from the first-generation model,
but the latest Apple handset is still a compelling upgrade for some users.”

Not Interesting – An example: “If I seem cooler, it’s because I’m no longer
using a 1st gen iPhone. 3gs upgrade”

Question 3: Evaluation of Curiosity

The Curiosity is evaluated to determine whether the editors would like to learn
more about the information provided. The following guideline for evaluation of
curiosity is provided to the editors:

• Would you like to learn more about the information provided?

• Based on the summary provided, would you be interested to learn more
about that content or the topic (the named object).

• A message, or part of a message, designed to arouse curiosity and interest
and cause the reader to explore further, but without revealing too much.

• If the object is underlined and clickable as a link, based on the summary
around it would you actually click on it to learn more about it?

The judges can select from the following choices:

Would Like To Learn More – An example: “Did you know that the iphone
is used twice as much as any other phone in the US?”

Would Not Like To Learn More – An example: “The iphone 3GS is man-
ufactered by Apple.”
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5.2.4 Error Rate

In statistics there are several ways to show that the number of samples is of
sufficient size. For our experiments we calculated a 95% confidence interval for
each sample, which is common for such a scenario. What that means is that for
a given sample, an interval is calculated, that contains the mean of the sample
with a confidence of 95%.

Appendix B shows detailed statistics about the samples we used throughout
our experiments. All samples show small confidence intervals with low margins
of error (less than 3.5%), which means that we have very stable data.

5.3 Problem Validation

In a preliminary experiment at the beginning of the thesis we evaluated our
hypothesis stated in the introduction to validate that the problem stated in the
problem statement actually exists.

5.3.1 Evaluation of the Baseline

For each entity out of the test set we presented the top-3 snippets for each
provider from the baseline to the editors. 1785 judgements were given by 18
distinct judges during the duration of this experiment.

R SR RSR I SI ISI C

Precision of unranked baseline sets

Google Web 29.6% 34.2% 63.8% 18.5% 29.0% 47.4% 27.8%

Twitter 5.1% 26.8% 31.9% 2.4% 15.9% 18.3% 6.5%

Google Blogs 15.6% 34.9% 50.4% 10.5% 29.0% 39.5% 17.3%

Editorial Picks 68.3% 27.1% 95.4% 55.8% 36.0% 91.8% 67.4%

Mean-Average-Precision of ranked baseline lists

Google Web 27.4% 32.8% 60.2% 16.4% 27.2% 43.6% 25.4%

Twitter 5.8% 30.1% 35.9% 3.0% 16.9% 20.0% 7.5%

Google Blogs 15.9% 34.1% 50.0% 10.6% 29.3% 39.8% 16.0%

Editorial Picks 71.6% 23.7% 95.3% 57.6% 34.4% 92.1% 67.5%
* Relevant (R), Somewhat Relevant (SR), Relevant + Somewhat Relevant
(RSR), Interesting (I), Somewhat Interesting (SI), Interesting + Somewhat
Interesting (ISI), Curiosity (C)

Table 5.2: Performance Evaluation of the Baseline

Table 5.2 shows the Precision (which not considers the ranking) and the
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Mean-Average-Precision (which considers the ranking) for the baseline snippets.
The Baseline ranks are equivalent to the originating search engine ranks. The
used evaluation measures have been discussed in Section 2.1.3 in detail.

5.3.2 Problem Validation Summary

The results from the baseline evaluation show that there is a clear gap between
what state-of-the-art search systems are able to provide today and the gold stan-
dard, what a human editor is able to archive.

With this initial experiment we have shown that there is actually a problem,
which then motivated us to investigate possible solutions on whether and how
it is possible to further reduce the qualitative gap to the gold standard (upper
bound).

5.4 Snippet Extraction Performance

Having developed and tuned the WebSnippets system with respect to the op-
timal algorithm configuration, we now put all the pieces together and evaluate
the final system with respect to the overall metrics of relevance, interestingness,
and curiosity. These results, shown in Table 5.5, are based on a set of 1,276
snippets, extracted from a corpus of top-100 aggregated documents.

This evaluation consists of two parts. First, we evaluated the overall snip-
pet extraction performance of the unranked snippet candidates. Second, we
evaluated the snippet ranking process to see whether the quality of the top-k
snippets could further be increased by ranking them according to the dimensions
of relevancy, interestingness, and curiosity.

5.4.1 Evaluation of Snippet Candidate Set

The Snippet Candidate Set presents the unranked set of snippet candidates,
extracted by our system. In a first step we evaluated their overall performance
to see, how well the extraction algorithm performs.

Our evaluated snippet candidates were extracted using our DS2 algorithm,
using the top-100 aggregated documents as source for the snippet extraction
process. We retrieved search results from the same search engines we used for
our baseline, namely Google Web, Google Blogs and Twitter. For rank aggre-
gation we used the rank average algorithm, which we discussed earlier. 1961
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judgements were given by 15 distinct judges during this experiment.

The results presented in Figure 5.2 show, the combination of source ag-
gregation, snippet extraction, and de-duplication, combine to yield an relevance
score of 81.3% (1936 judgements), an interestingness score of 74.2% (1930 judge-
ments), and a curiosity score of 40.7% (1864 judgements).

Figure 5.2: Results of the WebSnippets Performance

5.4.2 Evaluation of Snippet Ranking

The second part of this experiment evaluated the snippet ranking component
as described in Section 3.5. With this experiment we evaluated how well our
feature-based ranking approach increases the performance of WebSnippets.

Figure 5.3: Overview of the snippet ranking prediction queue

Figure 5.3 shows the experimental setup, where we took the judgements as
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input to train three distinct prediction models for for each dimension, relevancy,
interestingness, and curiosity on the snippets feature vector.

After preprocessing, we used 10-fold cross-validation with random sampling,
automatic feature selection using the M5 attribute selection method and the
LinearRegression algorithm from the WEKA framework, to determine the
“best” prediction function to calculate the continous snippet ranking scores.
The generated prediction models are shown in Appendix C.

As target variable of the training set, we used the judgements provided by
out editorial team. Judgements voted as “yes” or “very” are scored with 1.0,
judgements voted as “somewhat” are scored with 0.5, and judgements voted as
“no” are scored with 0.

Relevancy Interestingness Curiosity

Precision 68.643% 57.511% 40.719%

Average Precision 78.762% 67.191% 49.013%

Improvement 11.742% 16.832% 20.368%

Table 5.3: Evaluation of the prediction model for relevancy, interestingness, and
curiosity after automatic feature selection

We notice here that this is not representative for the overall performance of
WebSnippets, but rather a way to show, that the overall performance can be
improved using our feature-based ranking approach. We evaluated over all snip-
pets in the same model, rather than on a per entity or concept basis. Therefore,
we don’t have multiple queries and therefore no MAP or the MAP is the AP.

Error Rate Relevancy Interestingness Curiosity

Correlation coefficient 0.2886 0.2379 0.0861

Mean absolute error 0.6284 0.6572 0.9357

Root mean squared error 0.738 0.77 0.9835

Relative absolute error 90.1919 % 97.2286 % 97.5604 %

Root relative squared error 95.7449 % 97.6638 % 100.8512 %

Table 5.4: Evaluation of the prediction model for relevancy, interestingness, and
curiosity after automatic feature selection

Table 5.4 shows that even we can improve the snippet quality significantly
by ranking them, the prediction of the snippet performance score shows a high
margin of error. Therefore, this model is not good for prediction the true value
somewhat would vote for an individual snippet, but rather to get just a “better”
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ranked list of snippets.

5.4.3 Overall Snippet Extraction Performance Summary

With this experiment we have shown two things. First, that the gap between
what state-of-the-art search systems are able to provide today and the gold stan-
dard can significantly be reduced through WebSnippets. Second, we were able
to further improve WebSnippets performance by ranking the snippets according
to features influencing the overall quality.

Relevancy Tw GB GW WS EP

Relevant 5.1% 15.6% 29.6% 56.2% 68.3%

Somewhat Relevant 26.8% 34.9% 34.2% 25.2% 27.1%

Not Relevant 68.1% 49.6% 36.2% 18.7% 4.6%

Interestingness

Interesting 2.4% 10.5% 18.5% 41.4% 55.8%

Somewhat Interesting 15.9% 29.0% 29.0% 32.7% 36.0%

Not Interesting 81.7% 60.5% 52.6% 25.8% 8.2%

Curiosity

Would Like To Learn More 6.5% 17.3% 27.8% 40.7% 67.4%

Would Not Like To Learn More 93.5% 82.7% 72.2% 59.3% 32.6%
* The Baseline: Twitter (Tw), Google Blogs (GB), Google Web (GW); Our
System: WebSnippets (WS); The Gold Standard: Editorial Picks (EP)

Table 5.5: Performance comparison of the Baseline, WebSnippets, and our gold
standard

As Table 5.5 shows, the overall combination of source aggregation, snippet
extraction, snippet de-duplication, and snippet ranking combine to yield an rel-
evance score of 81.3%, an interestingness score of 74.2%, and a curiosity score
of 40.7%.

Furthermore, as shown in Table 5.3, we were able to boost these values by
11.7% in relevancy, 16.8% in interestingness, and 20.4% in the curiosity metrics
by our ranking algorithm.

5.5 Discussion of Results

In an overall comparison WebSnippets shows an increase in relevancy of about
3.3 times from 16.8% of the baseline to now. Including somewhat relevant re-
sults, there is still an improvement of 1.67 times over the average of the baseline.
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Figure 5.4: Comparison of the Baseline, WebSnippets and the Gold Standard

Furthermore, we were able to reduce the “not relevant” results by 2.75 times.

In addition, WebSnippets shows an increase in interestingness of about 4
times from 10.5% of the baseline to now. Including somewhat interesting re-
sults, there is still an improvement of 1.67 times over the average of the baseline.
Furthermore, we were able to reduce the not interesting results by 2.5 times.

WebSnippets shows an increase in curiosity of about 2.4 times from 17.2%
of the baseline to now.

Even so the precision of our snippet candidates yield significantly better re-
sults than those of the baseline. Our experiment on the ranking component
showed an additional increase of relevancy by 11.7%, interestingness by 16.8%,
and curiosity by 20.4%. The ranking model isn’t a good prediction model due
to its high error rate.

The upper bound or gold standard for such a scenario is considered a hu-
man editor, who manually performs the task of finding and extracting the best
possible snippets from the Web. That is the ultimate goal to achieve by an
automated system such as WebSnippets. We have shown that we were clearly
able to significantly reduce that gap between the baseline and the gold stan-
dard, even so there is still room for improvement. More efforts in future work
is required to further reduce this gap in relevancy, interestingness, and curiosity.

Finally, the goal of this thesis to design and build a system that auto-
mates the process of extracting entity-centric knowledge from the Web and
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improve over the baseline with respect to user-centric information need has
been achieved. We were able to improve relevancy by 335%, interestingness by
396%, and curiosity by 237%.
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Figure 5.5: Overview over the judgements given by the editorial team



Chapter 6

Case Study: WebSnippets

in Live Like a German

Travel Web Site

The previous chapter described the algorithms to extract and rank entity-centric
snippets. We show now how this can be implemented for a particular embod-
iment to point out practical and system aspects, as well as performance and
scalability issues.

Figure 6.1: Screenshot of Live Like a German Website
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Our case study focuses on a small travel web site, Live Like a German1,
which is a portal for vacation rentals, vacation packages, and provides travel
guides for travelers to Germany. One of the problem areas for this web site is
overall high editorial cost for compiling travel guides and customized vacation
packages. Relevant travel content is very important for this site, and encourages
travelers to visit the site often and check back for new articles.

1) Find entities 2) Find related 
articles

3) Write original 
content

Start

Stop

Web Content

Editor

Figure 6.2: Traditional editorial approach of Live Like A German content ag-
gregation

The traditional editorial approach as shown in Figure 6.2 can be summarized
as 1) find popular Germany travel related entities (e.g., places, points of inter-
est), 2) have an editor manually find and edit related articles (e.g., from known
resources as Wikipedia, Wikitravel2), or 3) have an editor write original content.

In this chapter we provide an overview of Live Like a German and illustrate
how WebSnippets are used to decrease their editorial costs while still providing a
source of high quality travel related content. In addition, WebSnippets content
can be further monetized, and helps with their overall SEO efforts to generate
more organic search engine traffic.

1http://www.live-like-a-german.com, accessed on 01/04/2010
2http://www.wikitravel.org, accessed on 01/04/2010



CHAPTER 6. CASE STUDY: WEBSNIPPETS IN LIVE LIKE A GERMAN TRAVEL WEB SITE73

6.1 Overview of Live Like a German

Live Like a German is a vacation rental portal focused on vacation apartments
in Germany. The site differentiates itself from its competitors with its tight in-
tegration of travel content that allows travelers to learn more about the country,
and make informed decisions on where to go and where to stay.

Good quality travel content is critical to the overall success of the site and
its strategy. First, it helps to differentiate against other travel portals. Sec-
ond, great content attracts new users and helps the site to rank high in search
engines. Most of its content currently is being produced by editors, who are
writing original articles, travel guides, and trip plans, based on input of prop-
erty owners in Germany.

For example, a property owner in Munich puts together some ideas for a trip
plan (e.g., a few itinerary items for a 7 day trip). The content is in raw form,
mostly in German. An editor then translates this raw / original content and
polishes it into a high quality trip plan that then can be consumed on the web
site. Or, editors are compiling interesting points of interest (POI), along with
travel insider tips related to this POI.

Especially this latter use case motivated for an integration with WebSnip-
pets. An algorithmic approach for generating travel content related to POIs
and travel destinations would decrease the dependency on editors, and therefore
overall decreasing overall editorial costs. Furthermore, it would help to better
scale and find content for lesser known destinations. Third, it would allow the
web site to stay up to date since new content is being generated continuously.

6.2 Web-Snippets Integration

Live Like a German organizes its content around these entity types:

• Destination (e.g., Munich)

• Region (e.g., Bavaria)

• POI (e.g., Castle Neuschwanstein)

Those entities are linked together based on their geographical proximity and
containment. This natural concept network then allows users to conveniently
navigate related or nearby destinations and travel attractions.
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The integration with WebSnippets therefore is organized based on these core
entities. As a seed set we obtained from Live Like a German a list of all their
current travel entities, sorted by their types. We then used these as a seed set
to generate WebSnippets.

The original integration (based on the WebSnippets design and implemen-
tation described in the earlier chapter) was done by having an off-line process
running once a day to obtain the latest candidate documents and extracted
snippets for these travel entities. Those entities would then be saved and im-
ported into their database on a daily basis.

Live Like a German then has a serving layer that reads these snippets and
shows them along those entities in certain areas of their web site. For example,
within the travel guide for Munich there is a small module “Travel Snippets”
that lists the latest extracted snippets.

Figure 6.3: Screenshot of Live Like a German Travel Snippets

Since the focus of this initial integration was mostly to validate the usefulness
of WebSnippets content the overall integration has been kept simple. Duplica-
tion is handled by generating a MD5 content checksum. WebSnippets are just
generated once a day, and ranking of them has been kept simple too. Focus was
mostly on recall to find content particularly for the lesser known destinations
(e.g., smaller villages).
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In particular, the following modifications and simplifications have been made
regards to the full-blown production system as described earlier:

Herbivore Selection we used a fixed sets of herbivores for every run

Extraction Techniques WRS and DS1 are not used, using DS2

Classification no classification in de-dup is done

Regression Ranking we do not use regression score for ranking but extracte-
dAt

The full system and application flow is shown here:

LLAG 
objects Snippets

LLAG website WebSnippets 
system

Web

Figure 6.4: Flow-diagram of Live Like a German system-integration

For the query formulation strategy the imported data already contained lots
of extra meta-data. That helped to basically come up with different query tem-
plates that proved to be very effective.
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For example, for destinations the query would be “DESTINATION Ger-
many”. This one would already disambiguate sufficiently with other places
(e.g., Berlin in USA vs. Berlin in Germany). The destinations already had in
most of the cases disambiguation information in their name (e.g., Rothenburg
an der Fulda vs. Rothenburg ob der Tauber). This further helped to decrease
overall ambiguity in the queries and let to good quality and relevant source
documents.

Destination:

DESTINATION-NAME, STATE-NAME, COUNTRY-NAME

DESTINATION-NAME travel guide, COUNTRY-NAME

DESTINATION-NAME travel tips, COUNTRY-NAME

Region:

REGION-NAME, COUNTRY-NAME

REGION-NAME region, COUNTRY-NAME

REGION-NAME tourist guide, COUNTRY-NAME

Business:

BUSINESS-NAME, DESTINATION-NAME, COUNTRY-NAME

BUSINESS-NAME, STREET-NAME + NUMBER, DESTINATION-NAME

BUSINESS-NAME, BUSINESS-TYPE, DESTINATION-NAME

For the document sources we selected the following search providers:

• Google Web Search

• Google Blog Search

• Bing Web Search

• Twitter Search



Chapter 7

Conclusions and future

work

Chapter 1 provided and introduction and motivation for our work, and high-
lighted the research problems that this thesis is addressing. We also pointed
out directions of future research related to user-centric information extraction.

Chapter 2 provided more background to our research and an overview of
related work.

Chapter 3 presented the system design and reviewed its main components.

Chapter 4 discussed implementation and engineering aspects, and presented
an overview of technologies used, which design features had been implemented.
We also provided detailed implementation details.

In chapter 5 we evaluated and studied the system’s performance and overall
quality of the snippet extraction.

Chapter 6 showed a concrete use case on how the WebSnippet system can
be integrated into a travel web site, helping with the automatic generation of
entity centric content for consumption.

This chapter 7 concludes with a summary of our results, achievements, and
lessons learned while working on our WebSnippet system. An outlook is provided
on future work and remaining open problems.
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7.1 Achievements

This thesis studied the problem of extracting entity centric context WebSnippets
automatically from the Web. To validate that the problem exists we conducted
an preliminary experiment that showed evidence that current search engines
and web information retrieval tools are not well designed for that task.

We introduced WebSnippets, a system designed for cost-effectively extracting
and ranking entity-centric knowledge from the Web with respect to user-centric
information needs. We investigated disambiguation using a web carnivore ap-
proach. We proposed three snippet extraction algorithms and showed how to
rank snippets according to features extracted from the snippets.

We implemented the proposed system design as a prototype using the Web-
Knox framework. During the implementation we able to continously refine and
tweak the system to yield optimal results.

We evaluated the results of the system and showed that it performed on
average three times as good in relevancy, four times as good in interestingness
and twice as good in curiostiy evaluation meassures than its state-of-the-art
competitors based on the human judgement.

We demonstrated the real world use of the system and its relevancy to prac-
tical application by integrating a prototype into the Live Like a German travel
site.

7.2 Future Work

There are still many open questions and issues that are worth exploring in future
work. This section depicts those questions.

7.2.1 Automatic Content Construction

As shown in our user study, the WebSnippets system presents a way to reduce
the cost of licensing or creating editorial content by automatically extracting
knowledge from the Web. To extend this approach further it would be very
helpful if WebSnippets were able to not only provide small snippets of text, but
could also be used to construct aggregate documents, such as travel guides. This
would even enhance the value, but requires more ideas on how to combine web
snippets intelligently to form a useful and comprehensive aggregation document.
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As shown in the background section, Cpedia tries to address this issue, but
still lacks the ability to provide good and interesting homogenous texts that are
easily consumable by the reader.

7.2.2 Enhanced Ranking

The WebSnippet system extracts and ranks knowledge according criteria that
focus on human consumption. Therefore, WebSnippets tries to show the best
possible content to the user, by taking quality features into account. This ap-
proach enables to explore many more possible features that might indicate the
quality for the users.

One promising approach is to take semantic knowledge about the entity into
account, to increase the overall interestingness further to the user.

7.2.3 Personalized Recommendations

In addition, each user has potentially different interests and experience. By
showing more personalized ranked web snippets to the user, and remembering
which snippets the user liked and not liked (or already knew) we can adapt the
system further to provide a very personalized experience and ranking.

7.3 Summary

This thesis has demonstrated various approaches to automatically extract and
rank entity-centric knowledge from the Web with respect to the users interest.
Therefore, we proposed, implemented, and evaluated the WebSnippets system
and showed that we have reached this goal.



Appendix A

Snippets

A.1 Preliminary Snippets

For the preliminary experiment, the following ranked snippets were picked by
editors from the top-100 Google Web search results and used as editorial picks:

Palm Pre (Product, Cellular Phone)

1. Despite some missing features and performance issues that make it less
than ideal for on-the-go professionals, the Palm Pre offers gadget lovers
and consumers well-integrated features and unparalled multitasking capa-
bilities. The hardware could be better...

2. The phone was launched on June 6, 2009, and is the first to use Palm’s
new Linux-based operating system, webOS. The Pre functions as a camera
phone, a portable media player, a GPS navigator, and an Internet client.

3. According to Debian developer Joey Hess, Palm Pre phone is periodically
sending users’ information to Palm. Palm is gathering users’ GPS infor-
mation, along with data on every application used, and for how long it
was used. This information gets uploaded to Palm on a daily basis, Hess
claims.

MacBook Pro (Product, Laptop)

1. There are still a few items on our 13-inch wish list–matte screens, mobile
broadband options, Blu-ray–but Apple has done an admirable job filling
in some of the major missing pieces. By offering more features for less
money, the 13-inch MacBook Pro remains one of the most universally
useful laptops available.
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2. The good: Adds SD card slot and reacquires FireWire; lower starting
price; same solid unibody construction and giant multitouch trackpad.
The bad: Nonremovable battery; no matte screen or discrete graphics op-
tions. Previously known as the MacBook, Apple’s basic 13-inch aluminum
unibody laptop has been promoted to the ”Pro” series with added features
and cutting the base price.

3. Radically overhauled last year, Apple’s MacBook line of laptops moved to
aluminum construction, edge-to-edge glass over LED displays, and oversize
multitouch trackpads

Bugatti Veyron 16.4 (Product, Car)

1. The Bugatti Veryron is, by every measure, the world’s fastest production
road car.

2. The $1.3 million Veyron will reach a top speed of 253 mph - a speed it
can maintain for 12 minutes before all the fuel is gone.

3. A model drove by superstars like Tom Cruise, couldn‘t name itself cheap,
rising the Bugatti Veyron at least of $1,700,000, a price that measures it‘s
quality.

Volvo C30 BEV (Product, Car)

1. The Volvo C30 BEV is the first model we will try out with electric power.
This car’s excellent properties in city traffic and its relatively low weight
make it particularly suitable, since electric cars are primarily expected to
be used in and around cities and for daily commuting.

2. Several C30 BEV prototypes have been produced by Volvo and it is pow-
ered by a lithium-ion battery pack. As the C30 BEV runs purely on
electricity, its battery has a larger capacity of 24kwh compared to the
12kwh battery found in the plug-in hybrid.

3. The C30 BEV doesn’t have the forceful energy recuperation when lifting
off the accelerator that we’ve experienced in some electric cars, though any
time you’re freewheeling or braking the Volvo is scavenging back energy
that would otherwise be lost.

The Lost Symbol (Product, Book)

1. Nevertheless, I enjoyed ”The Lost Symbol” as mindless entertainment. It
definitely peaked my interest to get back to Washington D.C. and see the
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Capitol Building, the Washington Monument and the Masonic Temple.
It is not a good as ”Angels & Demons” or even ”The Da Vinci Code”.
Although I usually don’t rate books this way, I would give it three of five
stars.

2. There’s not much tension-relieving humor in ”The Lost Symbol”, but there
is one spot in which Brown seems to be poking fun at himself and his delay
in finishing the manuscript for this book.

3. Anyway, I bring this up because it looks like Dan Brown’s latest novel,
”The Lost Symbol”, is the first book on record that is selling better on
the Amazon Kindle than its hardcover counterpart.

San Francisco (Place, City)

1. Today, San Francisco is a popular international tourist destination renowned
for its chilly summer fog, steep rolling hills, eclectic mix of Victorian and
modern architecture and its famous landmarks, including the Golden Gate
Bridge, the cable cars, and Chinatown.

2. According to the 2005 American Community Survey, San Francisco has
the highest percentage of gay and lesbian individuals of any of the 50
largest U.S. cities, at 15.4

3. San Francisco Chinatown is the largest Chinatown outside of Asia as well
as the oldest Chinatown in North America. It is one of the top tourist
attractions in San Francisco.

Frankfurt (Place, City)

1. Located on the river Main, Frankfurt is the financial capital of Continen-
tal Europe and the transportation centre of Germany. Frankfurt is home
of the European Central Bank and the German Stock Exchange. Further-
more, it hosts some of the world’s most important trade shows, such as the
Frankfurt Auto Show and the Frankfurt Book Fair. It is also birthplace
of Johann Wolfgang von Goethe.

2. Frankfurt is a city of contrasts. Wealthy bankers, students and granola
drop-outs coexist in a city that has some of the highest, most avant-garde
skyscrapers of Europe next to well maintained old buildings.

3. The downtown area, especially Römer square and the museums at the
River Main, draw millions of tourists every year. On the other hand, many
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off the beaten track neighborhoods, such as Bockenheim, Bornheim, Nor-
dend and Sachsenhausen, with their intact beautiful 19th century streets
and parks, are mostly neglected by tourism and lesser visited by tourists.

Riesa (Place, Town)

1. Riesa is a town in the district of Meissen in the Free State of Saxony,
Germany. It is located at the river Elbe, approx. 40 km northwest of
Dresden.

2. Riesa is well-known for its pasta, which is produced in the Teigwaren
Fabrik Riesa

3. One town boosts east German image: Riesa exemplifies the region’s new
formula for growth: flexible labor and stars like Muhammad Ali.

Gilroy (Place, Town)

1. Gilroy is the southernmost city in Santa Clara County, California, United
States, and in the San Francisco Bay Area. The population was 41,464 at
the 2000 census.

2. Gilroy is well known for its garlic crop; the Gilroy Garlic Festival which
occurs annually, featuring various garlicky foods including garlic ice cream.

3. Gilroy’s nickname is ”Garlic Capital of the World,” although Gilroy does
not lead the world in garlic production.

Luxora (Place, Village)

1. Luxora is a town in Mississippi County, Arkansas, United States. The
population was 1,317 at the 2000 census.

2. The unemployment rate in Luxora is 14.20 percent(U.S. avg. is 8.50%).
Recent job growth is Negative. Luxora jobs have Decreased by 0.40 per-
cent.

3. The median home cost in Luxora is $53,450. Home appreciation the last
year has been -3.80 percent. Compared to the rest of the country, Luxora’s
cost of living is 32.62% Lower than the U.S. average.
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Barack Obama (Person, Politican)

1. In December 2007, Money magazine estimated the Obama family’s net
worth at $1.3 million. Their 2007 tax return showed a household income
of $4.2 million-up from about $1 million in 2006 and $1.6 million in 2005-
mostly from sales of his books.

2. Barack Hussein Obama II (born August 4, 1961) is the 44th and current
President of the United States. He is the first African American to hold
the office, as well as the first president born in Hawaii.

3. Obama is the fourth U.S. president to be awarded the Nobel Peace Prize.
He is the third to become a Nobel laureate during his term in office, and
the first to be recognized in the first year of his presidency.

Amy MacDonald (Person, Musican)

1. Amy MacDonald is a self-taught musician, playing her father’s guitar after
being inspired by Travis at the T in the Park Festival in 2000, where she
heard Travis’ song ”Turn” and wanted to play it herself.

2. The thrill of topping the U.K. album charts has waned for Scottish singer
Amy MacDonald, because she hasn’t made a penny from her number one
record.

3. Macdonald started playing in pubs and coffee houses around Glasgow at
15...

Robin Williams (Person, Actor)

1. Robin Williams has been very public about his own ADD. His creative
comic explosions are a great way to visualize what it’s like. But not all
his thoughts are funny.

2. Robin Williams needs heart surgery and must cancel the remainder of his
one-man comedy show, ”Weapons of Self-Destruction,” his publicist said
Thursday.

3. During the late 1970s and early 1980s, Williams had an addiction to co-
caine

Bill Gates (Person, Founder)

1. Bill Gates, the chairman of Microsoft and the world’s wealthiest man, is
heading toward his new role as a full-time philanthropist.
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2. Gates has pursued a number of philanthropic endeavors, donating large
amounts of money to various charitable organizations and scientific re-
search programs through the Bill & Melinda Gates Foundation, estab-
lished in 2000.

3. Time magazine named Gates one of the 100 people who most influenced
the 20th century, as well as one of the 100 most influential people of 2004,
2005, and 2006.

Reiner Kraft (Person, Researcher)

1. Reiner is a technologist and innovator, working at Yahoo! in Sunnyvale,
CA. During the past three years he managed engineering teams working
on cutting edge search technology. His most recent project ”Yahoo! Glue

2. One of Reiner’s key strength is innovation and idea generation: He filed
over 115 patent applications and continuously contributed many valuable
ideas to IBM’s and Yahoo!’s patent portfolio. In 2003 he has been recog-
nized as a Master Inventor within IBM’s research division – the highest
achievable honor and recognition for individual contributors.

3. Furthermore, Reiner has been recognized with the TR100 award from MIT
Technology Review in 2002, a prestigious award for recognizing individuals
for extraordinary innovation and impact to our society.

Yahoo Inc. (Organization, Company)

1. Not wanting to be left completely behind, Yahoo will soon launch their
own real time search engine too. But unlike Microsoft and Google, they
won’t be partnering with Twitter and Facebook directly for the data...

2. Consumers can now personalise their Yahoo! experience with the best of
the Web; customisable apps stay with you when you’re mobile.

3. For Yahoo, the move furthers the strategy under chief executive Carol
Bartz to focus the company on its strengths as a producer of Web me-
dia sites, as a marketer and a leader in on-line display advertising that
accompanies published Web sites and to grow its audience.

AT&T Inc. (Organization, Company)

1. AT&T Inc. (T) is scheduled to report the third quarter results on Thurs-
day, October 22, 2009. In the last four quarters, the company’s actual
earnings exceeded the market’s consensus significantly. ... In the third
quarter last year, AT&T activated 2.4 million iPhones, of which 40
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2. AT&T has faced a fairly steady stream of complaints from customers–the
majority of those complaints coming from the dedicated legions of iPhone
users. There have been complaints that the battery can’t be replaced,
complaints that the data service is slow, complaints that 3G access is
dysfunctional, complaints that the device couldn’t do MMS messaging,
and more.

3. AT&T is throwing iPhone users a bone by offering MMS as of September
25, but is that enough to quiet a growing chorus of angry customers upset
by what they see as shoddy service? Even though many people are pouring
on ...

Rotary International (Organization, NGO)

1. The Gates Foundation has awarded The Rotary Foundation a total of $350
million in two challenge grants to help end polio. In response, Rotary has
committed to raising a total of $200 million by 30 June 2012. This effort
is called Rotary’s US$200 Million Challenge.

2. Rotary has no secret handshake, no secret policy, no official creed, no
secret meeting or rituals. It is an open society of men and women who
simply believe in helping others.

3. Youth exchange has been one of Rotary’s most successful and popular
programs. Today, Rotary annually places over 8,000 students aged 15-19
with Rotarian families in another country.

IKEA (Organization, Company)

1. IKEA is a privately-held, international home products retailer that sells
flat pack furniture, accessories, and bathroom and kitchen items in their
retail stores around the world. The company, which pioneered flat-pack
design furniture at affordable prices, is now the world’s largest furniture
retailer.

2. Penguino is a citizen of Ikea World, a state of mind that revolves around
contemporary design, low prices, wacky promotions, and an enthusiasm
that few institutions in or out of business can muster. Perhaps more than
any other company in the world, Ikea has become a curator of people’s
lifestyles, if not their lives.

3. IKEA products are identified by single word names. Most of the names
are Swedish in origin. Although there are some notable exceptions, most
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product names are based on a special naming system developed by IKEA
in conjuntion with Colin Edwards.

Live Like a German (Organization, Company)

1. The Live Like a German travel guide to Germany provides you with special
trips, unique activities and travel ideas, which you can’t find in a typical
travel guide. Sometimes these are small, but hidden gems, that all the
local people know about, but as a regular tourist in Germany you may
not be able to discover it easily...

2. On the Live Like a German web site a user can find hundreds of articles
about specific destinations, fun trips and activities as well as fantastic
restaurants and nighttime spots. Written by Germans, who know from
first-hand experience what they are talking about, the texts are short and
sweet and include pictures as well as links for further reading.

3. The best feature about Live Like A German probably is, it is very user-
oriented and intuitive to use. Additionally to being a helpful travel guide,
where a user can find information about beautiful locations and interesting
sights, it can work as a personalized travel agent for their users.



Appendix B

Error Rates

Google Web Relevancy Interestingness Curiosity

Count of observations 442 449 435

Sample mean 2.934 2.659 2.556

Sample variance 0.656 0.596 0.805

Estimate of standard error 0.039 0.036 0.043

Margin of error 0.076 0.072 0.085

Margin of error % 2.579% 2.692% 3.307%

Lower limit 2.859 2.588 2.472

Upper limit 3.010 2.731 2.641

Table B.1: Error rate for Google Web

Twitter Relevancy Interestingness Curiosity

Count of observations 370 377 371

Sample mean 2.370 2.207 2.129

Sample variance 0.337 0.212 0.243

Estimate of standard error 0.030 0.024 0.026

Margin of error 0.059 0.047 0.050

Margin of error % 2.503% 2.115% 2.362%

Lower limit 2.311 2.160 2.079

Upper limit 2.430 2.254 2.180

Table B.2: Error rate for Twitter
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Google Blogs Relevancy Interestingness Curiosity

Count of observations 450 448 439

Sample mean 2.660 2.500 2.346

Sample variance 0.537 0.461 0.574

Estimate of standard error 0.035 0.032 0.036

Margin of error 0.068 0.063 0.071

Margin of error % 2.552% 2.521% 3.029%

Lower limit 2.592 2.437 2.275

Upper limit 2.728 2.563 2.417

Table B.3: Error rate for Google Blogs

Editorial Picks Relevancy Interestingness Curiosity

Count of observations 457 453 433

Sample mean 3.637 3.477 3.349

Sample variance 0.324 0.414 0.880

Estimate of standard error 0.027 0.030 0.045

Margin of error 0.052 0.059 0.089

Margin of error % 1.439% 1.708% 2.647%

Lower limit 3.584 3.417 3.260

Upper limit 3.689 3.536 3.437

Table B.4: Error rate for Editorial Picks

WebSnippets Relevancy Interestingness Curiosity

Count of observations 1930 1936 1864

Sample mean 3.375 3.156 2.814

Sample variance 0.608 0.649 0.966

Estimate of standard error 0.018 0.018 0.023

Margin of error 0.035 0.036 0.045

Margin of error % 1.031% 1.137% 1.586%

Lower limit 3.340 3.120 2.770

Upper limit 3.410 3.192 2.859

Table B.5: Error rate for WebSnippets



Appendix C

Prediction Models

Linear Regression Model: relevancy =

0.3229 * f_SearchEngine1 +

0.114 * f_SearchEngine8 +

0.0631 * f_TopLevelDomain +

0 * f_MainContentCharCount +

0.0004 * f_CharacterCount +

-0.0055 * f_WordCount +

0.0066 * f_UniqueWordCount +

-0.0051 * f_ComplexWordPercentage +

0.203 * f_SentenceCount +

0.0053 * f_WordsPerSentenceCount +

-0.0253 * f_AutomatedReadabilityIndex +

0.0256 * f_ColemanLiauIndex +

0.0424 * f_SmogIndex +

-0.0441 * f_CapitalizedWordCount +

-0.064 * f_RelatedEntityCount +

0.3991

Linear Regression Model: interestingness =

0.0011 * f_AggregatedRank +

0.26 * f_SearchEngine1 +

0.047 * f_TopLevelDomain +

0 * f_MainContentCharCount +

0.0003 * f_CharacterCount +

-0.0108 * f_WordCount +

0.016 * f_UniqueWordCount +

-0.0127 * f_ComplexWordPercentage +
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0.1393 * f_SentenceCount +

0.0039 * f_WordsPerSentenceCount +

-0.0237 * f_AutomatedReadabilityIndex +

0.0354 * f_ColemanLiauIndex +

0.0514 * f_SmogIndex +

-0.0538 * f_CapitalizedWordCount +

-0.0627 * f_RelatedEntityCount +

0.1683

Linear Regression Model: curiosity =

0.002 * f_AggregatedRank +

0.2118 * f_SearchEngine1 +

0.0284 * f_PageRank +

0.0451 * f_TopLevelDomain +

0 * f_MainContentCharCount +

0.0013 * f_CharacterCount +

0.29 * f_SyllablesPerWordCount +

-0.0169 * f_WordCount +

0.0215 * f_UniqueWordCount +

-0.0155 * f_ComplexWordPercentage +

0.0985 * f_SentenceCount +

0.0038 * f_WordsPerSentenceCount +

-0.0325 * f_AutomatedReadabilityIndex +

0.0323 * f_ColemanLiauIndex +

0.0459 * f_SmogIndex +

-0.0922 * f_CapitalizedWordCount +

-0.0649 * f_RelatedEntityCount +

-0.5227
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G. Schreiber, and P. Cudré-Mauroux, Eds., vol. 4825. Springer Berlin Hei-
delberg, Berlin, Heidelberg, November 2007, ch. 52, pp. 722–735.

[5] Badii, A., Kolomiyets, O., Lallah, C., Khan, A., Zhu, M., and

Gardiner-Jones, B. State-of-the-art for entity-centric repository and
authoring environment for multimedia. In MIV’07: Proceedings of the 7th
Conference on 7th WSEAS International Conference on Multimedia, Inter-
net & Video Technologies (Stevens Point, Wisconsin, USA, 2007), World
Scientific and Engineering Academy and Society (WSEAS), pp. 226–232.

[6] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and

Etzioni, O. Open information extraction from the web. In IJCAI’07:
Proceedings of the 20th international joint conference on Artifical intelli-
gence (San Francisco, CA, USA, 2007), Morgan Kaufmann Publishers Inc.,
pp. 2670–2676.

[7] Barzilay, R., and McKeown, K. R. Sentence fusion for multidocument
news summarization. Comput. Linguist. 31, 3 (2005), 297–328.

[8] Barzilay, R., McKeown, K. R., and Elhadad, M. Information fusion
in the context of multi-document summarization. In Proceedings of the

92



BIBLIOGRAPHY 93

37th annual meeting of the Association for Computational Linguistics on
Computational Linguistics (Morristown, NJ, USA, 1999), Association for
Computational Linguistics, pp. 550–557.

[9] Borko, H., and Bernier, C. L. Abstracting Concepts and Methods.
Academic Press, Inc., 1975.

[10] Brandow, R., Mitze, K., and Rau, L. F. Automatic condensation of
electronic publications by sentence selection. Inf. Process. Manage. 31, 5
(1995), 675–685.

[11] Broder, A. Identifying and filtering near-duplicate documents. 2000,
pp. 1–10.

[12] Broder, A. Z. A taxonomy of web search. SIGIR Forum 36, 2 (2002),
3–10.

[13] Chang, C.-H., Kayed, M., Girgis, M. R., and Shaalan, K. A sur-
vey of web information extraction systems. IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING (2006).

[14] Cios, K., Swiniarski, R., Pedrycz, W., and Kurgan, L. Concepts of
learning, classification, and regression. In Data Mining. Springer US, 2007,
ch. 2, pp. 49–67.

[15] Demartini, G., Firan, C. S., Georgescu, M., Iofciu, T., Krestel,

R., and Nejdl, W. An architecture for finding entities on the web. In LA-
WEB ’09: Proceedings of the 2009 Latin American Web Congress (la-web
2009) (Washington, DC, USA, 2009), IEEE Computer Society, pp. 230–
237.

[16] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. Rank aggre-
gation methods for the web. In WWW ’01: Proceedings of the 10th in-
ternational conference on World Wide Web (New York, NY, USA, 2001),
ACM, pp. 613–622.

[17] Edmundson, H. P. New methods in automatic extracting. J. ACM 16, 2
(1969), 264–285.

[18] Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. Duplicate
record detection: A survey. IEEE Trans. on Knowl. and Data Eng. 19, 1
(2007), 1–16.

[19] Etzioni, O. Moving up the information food chain: Deploying softbots
on the world wide web. AI Magazine 18, 2 (1997), 11–18.



BIBLIOGRAPHY 94

[20] Friedrich, C. Link analysis using apriori information. Master’s thesis,
Technische Universität Dresden, March 2009.

[21] Guo, J., Xu, G., Cheng, X., and Li, H. Named entity recognition in
query. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval (New
York, NY, USA, 2009), ACM, pp. 267–274.

[22] Hahn, U., and Mani, I. The challenges of automatic summarization.
Computer 33, 11 (2000), 29–36.

[23] Hovy, E. Building semantic/ontological knowledge by text mining. In
COLING-02 on SEMANET (Morristown, NJ, USA, 2002), Association for
Computational Linguistics, pp. 1–1.

[24] Hovy, E., and Lin, C.-Y. Automated text summarization and the sum-
marist system. In Proceedings of a workshop on held at Baltimore, Maryland
(Morristown, NJ, USA, 1996), Association for Computational Linguistics,
pp. 197–214.

[25] Jing, H., and McKeown, K. R. The decomposition of human-written
summary sentences. In SIGIR ’99: Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and development in information
retrieval (New York, NY, USA, 1999), ACM, pp. 129–136.

[26] Kobayashi, M., and Takeda, K. Information retrieval on the web. ACM
Comput. Surv. 32, 2 (2000), 144–173.

[27] Kraft, R., Chang, C. C., and Maghoul, F. Y!Q: Contextual search
at the point of inspiration. In Proceedings of the 14th Conference on Infor-
mation and Knowledge Management (CIKM) (2005).

[28] Kraft, R., Chang, C. C., Maghoul, F., and Kumar, R. Searching
with context. In WWW ’06: Proceedings of the 15th international confer-
ence on World Wide Web (New York, NY, USA, 2006), ACM, pp. 477–486.

[29] Lin, C.-Y. Training a selection function for extraction. In CIKM ’99: Pro-
ceedings of the eighth international conference on Information and knowl-
edge management (New York, NY, USA, 1999), ACM, pp. 55–62.

[30] Liu, B. Web Data Mining. Spinger, 2007.

[31] Luhn, H. P. The automatic creation of literature abstracts. IBM J. Res.
Dev. 2, 2 (1958), 159–165.



BIBLIOGRAPHY 95

[32] Mani, I. Advances in Automatic Text Summarization. MIT Press, Cam-
bridge, MA, USA, 1999.

[33] Mani, I., and Benjamins, J., Eds. Automated Text Summarization. MIT
Press, 2002.

[34] Mani, I., and Bloedorn, E. Summarizing similarities and differences
among related documents. Inf. Retr. 1, 1-2 (1999), 35–67.

[35] Metzler, D., Dumais, S., and Meek, C. Similarity measures for short
segments of text. In Advances in Information Retrieval, Lecture Notes in
Computer Science. 2007, ch. 5, pp. 16–27.

[36] Nadeau, D., and Sekine, S. A survey of named entity recognition and
classification. In Linguisticae Investigationes (2007), vol. 30, pp. 3–26.

[37] Navigli, R. Word sense disambiguation: A survey. ACM Comput. Surv.
41, 2 (2009), 1–69.

[38] Noy, N. F., and Mcguinness, D. L. Ontology development 101: A guide
to creating your first ontology. Tech. rep., Stanford University, Stanford,
CA, 94305, 2001.

[39] Nunamaker, J. F., Jr., N. C. R., and Briggs, R. O. A framework
for collaboration and knowledge management. In HICSS (2001).

[40] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank
citation ranking: Bringing order to the web.

[41] Paice, C. D. Constructing literature abstracts by computer: techniques
and prospects. Inf. Process. Manage. 26, 1 (1990), 171–186.

[42] Radev, D. R., Jing, H., and Budzikowska, M. Centroid-based sum-
marization of multiple documents: sentence extraction, utility-based eval-
uation, and user studies. In NAACL-ANLP 2000 Workshop on Automatic
summarization (Morristown, NJ, USA, 2000), Association for Computa-
tional Linguistics, pp. 21–30.

[43] Rowley, J. The wisdom hierarchy: representations of the dikw hierarchy.
J. Information Science 33, 2 (2007), 163–180.

[44] Salton, G., and McGill, M. J. Introduction to modern information
retrieval. McGraw-Hill, New York, 1983.

[45] Salton, G., Singhal, A., Mitra, M., and Buckley, C. Automatic
text structuring and summarization. Inf. Process. Manage. 33, 2 (March
1997), 193–207.



BIBLIOGRAPHY 96

[46] Sauper, C., and Barzilay, R. Automatically generating wikipedia arti-
cles: a structure-aware approach. In ACL-IJCNLP ’09: Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Processing of the AFNLP:
Volume 1 (Morristown, NJ, USA, 2009), Association for Computational
Linguistics, pp. 208–216.

[47] Schank, R., and Abelson, R. Scripts, Plans, Goals, and Understanding.
Hillsdale, NJ: Earlbaum Assoc, 1977.

[48] Taylor, R. S. The process of asking questions. American Documentation
13, 4 (1962), 391–396.

[49] Urbansky, D. Webknox: Web knowledge extraction. Master’s thesis,
Technische Universität Dresden, 2009.

[50] van Rijsbergen, C. J. Information Retrieval. Butterworth, 1979.

[51] von Brzeski, V., Irmak, U., and Kraft, R. Leveraging context in
user-centric entity detection systems. In CIKM (2007), ACM, pp. 691–
700.

[52] Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead,

M., and Soderland, S. Textrunner: open information extraction on
the web. In NAACL ’07: Proceedings of Human Language Technologies:
The Annual Conference of the North American Chapter of the Association
for Computational Linguistics: Demonstrations on XX (Morristown, NJ,
USA, 2007), Association for Computational Linguistics, pp. 25–26.


